首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
admin
2019-03-21
75
问题
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x
o
∈(0,1),使得在区间[0,x]上以f(x
o
)为高的矩形面积,等于在区间[x
o
,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导,且
,证明(1)中的x
o
是唯一的.
选项
答案
根据题意,若存在满足条件的x
o
∈(0,1),则有[*]为证明此式,引入辅助函数F(x),使得[*]不难发现[*]且F(0)=F(1)=0,并且f(x)在[0,1]上可导,则由罗尔定理知,存在x
0
∈(0,1)使得f
’
(x
0
)=0,即[*]因此x
0
的存在性得证.下面证明在题设(2)的条件下,(1)中x
0
的唯一性.事实上,只要证明f
’
(x)在[0,1]上是严格单调的即可,由(2)中已知条件f
’
(x)>[*],由于[f
’
(x)]
’
=f(x)+xf
’
(x)十f(x)=2f(x)+xf
’
(x)>0,因而f
’
(0,1)在[0,1]严格单调递增,因此(1)中的x
0
的唯一性也得证.评注关于(1)中x
0
的存在性的证明,也可采用以下方法:若存在x
1
[*]使得f(x)=0,[*],则任取x
0
∈(x
1
,1),有x
0
f(x
0
)=0=[*]若上述x
1
不存在,任取[*]由于f(x)在[c,1]上连续,由最值定理,存在x
2
∈[c,1],使得f(x
2
)>0为f(x)在[c,1]上的最大值.在区间[0,x
2
]上作辅助函数[*]则φ(x)连续,且φ(0)>0.又[*]φ(x
2
)[*]一x
2
f(x
2
)≤(1—2x
2
)f(x
2
)<0因而由闭区间上连续函数的零点定理,存在x
0
∈(0,x
2
)c(0,1),使φ(x
0
)=0,即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/MFV4777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,I=,其中t>0,s>0,则I的值
求下列积分:
求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图3.34).
边长为a和b的矩形薄板与液面成α角斜沉于液体内,长边平行于液面位于深h处,设a>b,液体的比重为7,求薄板受的液体压力.
证明:arctanx=(x∈(-∞,+∞)).
设A与B分别是m,n阶矩阵,证明
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
[*]本题先对y积分较困难,而先对x积分可以应用凑微分法,因此先交换积分次序得求解上述积分得
(2001年试题,一)设方程有无穷多个解,则a=__________
随机试题
资本家付给工人的工资其本质上是()。
关于新生儿生理性黄疸不正确的为
膝关节侧位标准片所见,不妥的是
下列名词与解释对应关系有误的是()。
幼儿膨化食品,含20%猪肉(可见小肉块),40%对虾,30%马铃薯,10%其他配料,净重500g零售包装
某收益性资产,效益一直良好,经专业评估人员测定,第一年的预期收益为100万元,以后每年递增10万元。假定资本化率为10%,则该资产的评估价值最接近于()万元。
黄金收购量大于销售量,基础货币量()。
2013年,我国国内生产总值568845亿元,比上年实际增长7.7%。其中,第一产业增加值56957亿元,第二产业增加值249684亿元,第三产业增加值262204亿元。第一产业增加量占国内生产总值的比重为10.0%,第二产业增加值比重为43.9%,第三产
语言()和()的关系,是语言研究的最根本的问题。
Spacevehicleswerelaunchedintoouterspace______searchofanotherlivingplanet.
最新回复
(
0
)