设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?

admin2016-10-26  38

问题 设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?

选项

答案(Ⅰ)首先由xf′(x)=f(x)+[*]ax2,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f′(x)-[*]ax.两边乘积分因子μ=[*](取其中一个),得[*]a,于是f(x)=[*]ax2+Cx,x∈[0,1],其中C为任意常数使得f(x)>0(x∈(0,1). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=[*]则C=4-a.因此,f(x)=[*]ax2+(4-a)x, 其中a为任意常数使得f(x)>0(x∈(0,1)). [*]a,有f(0)=0,f(1)=[*]又f′(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. [*] (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.

解析
转载请注明原文地址:https://kaotiyun.com/show/MGu4777K
0

最新回复(0)