首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b) =0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b) =0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
admin
2019-08-01
37
问题
设f(x)在区间[a,b]上具有二阶导数,且f(a)=f(b) =0,f’(a).f’(b)>0.试证明:存在ξ∈(a,b)和η∈(a,b),使f(ξ)=0及f"(η)=0.
选项
答案
不妨设f(a)>0,f’(b)>0 [*] 故存在x
1
∈(a,a+δ
1
)和x
2
∈(b一δ
2
,b),使f(x
1
)>0,f(x
2
)<0,其中δ
1
和δ
2
是充分小的正数.显然x
1
<x
2
在[x
1
,x
2
]上应用介值定理得,存在ξ∈(x
1
,x
2
)使,(ξ)=0.以下同证1. 若f’(x
0
)>0,则存在δ>0.当x∈(x
0
一δ,x
0
)时f(x)<f(x
0
).当x∈(x
0
,x
0
+δ)时,f(x)>f(x
0
). 但因特别注意,由f’(x
0
)>0得不到存在x
0
某邻域(x
0
一δ,x
0
+δ),在此邻域内f(x)单调增.
解析
转载请注明原文地址:https://kaotiyun.com/show/MPN4777K
0
考研数学二
相关试题推荐
∫01
∫max{x+2,x2}dx=_________.
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex.确定常数a,b,c,并求该方程的通解.
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
求解下列方程:(Ⅰ)求方程xy’’=y’lny’的通解;(Ⅱ)求yy’’=2(yt2-y’)满足初始条件y(0)=1,y’(0)=2的特解.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时(如图1一3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3。)
随机试题
患者,女,35岁。诊断为伤寒,退热1~2周后临床症状再度出现,血培养阳性,应诊断为()
我国历史上第一部商标法规是在________年产生的。()
A、二丑B、鼠粘子C、破故纸D、草河车E、淡大芸牛蒡子的别名是
我国公共应急法制建设过去长期()的原因甚多,但从思想指导上来看,忽视行政应急性原则在行政法制建设中的应有地位和作用,显然是一个不可忽视的制约因素或日理论误区。
砌体结构房屋中,钢筋混凝土梁端下的墙上,有时设置垫块,其目的是()。
负债是指( )义务,履行该义务预期会导致经济利益流出企业。
2017年财务报告于2018年3月31日批准报出,2018年1月销售的商品,2018年2月10日退货,应按调整事项处理。()
甲、乙、丙、丁四家公司与杨某、张某拟共同出资设立一注册资本为400万元的有限责任公司。除杨某与张某拟以120万元货币出资外,四家公司的下列非货币财产出资中,符合公司法律制度规定的是()。
Intheearly1960sWiltChamberlainwasoneofonlythreeplayersintheNationalBasketballAssociation(NBA)listedatoversev
A、Helpful.B、Beneficial.C、Meaningful.D、Pointless.D
最新回复
(
0
)