首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
计算下列不定积分:
计算下列不定积分:
admin
2018-06-27
103
问题
计算下列不定积分:
选项
答案
(Ⅰ)采用凑微分法,并将被积函数变形,则有 [*] (Ⅱ)如果令[*]计算将较为复杂,而将分子有理化则较简便.于是 [*] 对于右端第一个积分,使用凑微分法,即可得到 [*] 而第二个积分可使用代换x=sint,则 [*] (Ⅲ)配方法. [*] (Ⅳ)对此三角有理式,如果分子是asinx+bcosx与(asinx+bcosx)’=cos-bsinx的线性组合,就很容易求其原函数,故设 a
1
sinx+b
1
cosx=A(asinx+bcosx)+B(acosx-bsinx). 为此应有 [*] (Ⅴ)记原式为J,先分项: [*] 易凑微分得J
2
=∫arcsinxdarcsinx=[*]arcsin
2
x+C. 下求J
1
. 作变量替换 [*] 变量还原得 [*] (Ⅵ)记原积分为J. 作变量替换[*],则 [*] 再分部积分得 [*] 变量还原得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/6ak4777K
0
考研数学二
相关试题推荐
设u=M(x,y)在全平面上有连续偏导数,若(x2+y2≥R2>0),求证
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设f(x)在(一∞,+∞)是连续函数,求y’’+y’=f(x)的通解.
设D是由直线x=0,y=0,z+y=1在第一象限所围成的平面区域,则_________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
没常数a>0,积分,试比较I1与I2的大小。要求写明推导过程.
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
随机试题
关于直肠癌,哪项是错误的
下列关于会计政策、会计估计及其变更的表述中,正确的有()。
甲企业为增值税一般纳税人,适用的增值税税率为17%,2015年度至2017年度发生的有关固定资产的经济业务如下,价格中均不含税:(1)2015年6月1日,自行建造一条生产线。建造过程中领用工程物资300万元,领用生产用原材料200万元,发生工人工资
导游服务在旅游接待服务中的纽带作用表现在()。
某同学沉默寡言,做事认真稳重,情感不外露,思维灵活性差,自制力强。他的气质类型是_________。
运用实际锻炼法要求以理服人、以情动人、情理交融。()
甲乙双方出现财产纠纷,丙受甲乙的委托进行调解。丙一旦同意做调解也就放弃了在以后偏袒任何一方的权利。因为存以后任何一点上袒护一方就意味着原先假定的公正只是一场骗局。上面的论述强调了以下丙身为调解人的哪一方面?()
简述芭蕾舞剧《天鹅湖》及舞蹈特征。
《明史·刑法志一》:“自汉以来,刑法沿革不一。隋更五刑之条,设三奏之令。唐撰律令,一准乎礼,以为出入。宋采用之,而所重者敕。律所不载者,则听之于敕。故时轻时重,无一是之归。元制,取所行一时之例为条格而已。明初,丞相李善长等言:‘历代之律,皆以汉《九章》为宗
邓小平提出建设有中国特色社会主义的命题是在党的()
最新回复
(
0
)