首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-06-27
65
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程[*].两边乘积分因子[*](取其中一个),得[*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0(x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
([*]ax
2
+Cx)dx=[*],则C=4-a.因此,f(x)=[*]ax
2
+(4-a)x,其中a为任意常数使得(x)>0(x∈(0,1)). [*],有f(0)=0,f(1)=[*]a+4-a=4+[*].又f’(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[ [*]ax
2
+(4-a)x]
2
dx =π∫
0
1
[([*]x
4
+x
2
-3x
3
)a
2
+(12x
3
-8x
2
)a+16x
2
]dx [*] (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xek4777K
0
考研数学二
相关试题推荐
曲线在点(0,0)处的切线方程为_______.
求极限。
处的值为_______.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
已知53求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
因为x→0+时,[*]所以[*]注解该题考查等价无穷小求极限的方法,当x→0常用的等价无穷小有:(1)x~sinx~tanx~arcsinx~arctanx~ex-1~ln(1+x);(2)1-cosx~,1-cosax~(3)(1+x)a-1~a
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
讨论函数f(x)=(x>0)的连续性.
随机试题
布袋除尘器为二级回收装置,回收后的粉末较细,一般仍可重复使用。
关于原料配比,下述不正确的是()。
男性,36岁,左胸部撞伤2小时,伴胸痛。检查:血压10.0/7.5kPa,心率112次/分。X线检查:左胸部6、7、8肋骨骨折。全腹压痛、反跳痛,腹穿吸出不凝血。病人主要的病理生理改变为
牙根形成的量取决于
甲方与乙方2002年4月订立买卖合同,约定甲方5月1日发货,乙方7月8日前付款。根据已知条件进行判断()。
Q企业为增值税一般纳税人,某日该企业购进原材料,取得增值税专用发票注明原材料价款为20万元,增值税税额为3.4万元,发票等结算凭证已经收到,货款未支付,材料已验收入库,则该批材料的入账价值为23.4万元。()
某企业签订了如下经济合同:与甲公司签订技术开发合同,合同总金额为400万元,其中研究开发费100万元;与乙公司签订货物销售合同,销售额为300万元,运输费用4万元,其中包括保险费0.5万元、装卸费0.57元,该企业应缴纳印花税( )元。
商业银行在流动性管理的过程中,所需要处理的一对矛盾包括()。
商业银行定期存款的最大弱点在于()。
随着产量的增加,短期平均固定成本()。(中山大学,2011)
最新回复
(
0
)