首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-06-27
63
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程[*].两边乘积分因子[*](取其中一个),得[*]ax
2
+Cx,x∈[0,1],其中C为任意常数使得f(x)>0(x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=∫
0
1
([*]ax
2
+Cx)dx=[*],则C=4-a.因此,f(x)=[*]ax
2
+(4-a)x,其中a为任意常数使得(x)>0(x∈(0,1)). [*],有f(0)=0,f(1)=[*]a+4-a=4+[*].又f’(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. V(a)=π∫
0
1
f
2
(x)dx=π∫
0
1
[ [*]ax
2
+(4-a)x]
2
dx =π∫
0
1
[([*]x
4
+x
2
-3x
3
)a
2
+(12x
3
-8x
2
)a+16x
2
]dx [*] (Ⅳ)求V(a)的最小值点.由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xek4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=0处连续,下列命题错误的是
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1)及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)dt(x≥0)。
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程zex-yey=zez所确定,求du.
设有3维列向量问λ取何值时:(1)β可由α1,α2,α3线性表示,且表达式唯一;(2)β可由α1,α2,α3线性表示,且表达式不唯一;(3)β不能由α1,α2,α3线性表示.
设A,B为n阶矩阵,满足等式AB=0,则必有
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y/(0)=3/2的解.
随机试题
副交感神经兴奋的表现是
某患者血小板5.0×109/L,出血时间5分钟,红细胞计数4.0×1012/L,白细胞计数5.0×109/L,网织红细胞1%。应考虑()。
西妥昔单抗用于头颈部肿瘤治疗,错误的是
A.主诉B.现病史C.既往史D.个人生活史E.家族史
下列五输穴,不属于本经母穴的是
履约保证金不得超过中标合同金额的()。
位于县城的某筷子生产企业系增值税一般纳税人,2011年4月份发生以下业务:(1)委托某商场代销红木工艺筷子5000套,双方约定。待5000套全部售出并取得代销清单后。企业再开具增值税专用发票给商场。本月底尚未收到代销清单。但已收到其中的3000套的不含税
银行业从业人员在处理客户投诉时,应当做到()。
下列说法不正确的是()。
Howdoesthemanseemtofeelaboutdrivingfromhishometohiswork?
最新回复
(
0
)