首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)y’’+a2y=8cosbx的通解,其中a>0,b<0为常数; (Ⅲ)y’’’+y’’+y’+y=0的通解.
解下列微分方程: (Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)y’’+a2y=8cosbx的通解,其中a>0,b<0为常数; (Ⅲ)y’’’+y’’+y’+y=0的通解.
admin
2018-06-27
30
问题
解下列微分方程:
(Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)y’’+a
2
y=8cosbx的通解,其中a>0,b<0为常数;
(Ⅲ)y’’’+y’’+y’+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为[*]=C
1
e
3x
+C
2
e
4x
. 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(x)=Ax+B.代入方程,可得A=[*].所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得 [*] 因此所求的特解为y(x)=[*](e
4x
-e
3x
). (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*]=C
1
cosax+C
2
sinax.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程,则得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程,则得 A=0,B=[*] 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lik4777K
0
考研数学二
相关试题推荐
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是
设u=M(x,y)在全平面上有连续偏导数,若(x2+y2≥R2>0),求证
已知累次积分其中a>0为常数,则,可写成
设f(x)在(一∞,+∞)是连续函数,求y’’+y’=f(x)的通解.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
随机试题
设矩阵,则ATB-1=_______.
胃癌淋巴结转移的常见部位是
用哪种方法可区分挥发油与脂肪油()
酶原激活过程实际就是酶活性中心形成或暴露的过程。()
如果飞行员严格遵守操作规程,并且飞机在起飞前经过严格的例行技术检验,那么飞机就不会失事,除非出现如劫机这样的特殊意外。这架波音747在金沙岛上空失事。如果上述断定是真的,那么以下哪项也一定是真的?
2012年10月10日,温家宝同志主持召开国务院常务会议,会议审议通过了《缺陷汽车产品召回管理条例(草案)》。该《条例(草案)》的通过()。
以下说法正确的是:
下列犯罪分子中,应当认定为从犯的是()
ThenumberofUS【B1】______overtheageof65wholivealoneis【B2】______torise21percentoverthenexttenyears,tomoreth
Google’sGoogleproblemGoogleiskillingGoogleReader.UseofGoogleReader,atool,bytheway,forreadingonlineconten
最新回复
(
0
)