首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解下列微分方程: (Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)y’’+a2y=8cosbx的通解,其中a>0,b<0为常数; (Ⅲ)y’’’+y’’+y’+y=0的通解.
解下列微分方程: (Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)y’’+a2y=8cosbx的通解,其中a>0,b<0为常数; (Ⅲ)y’’’+y’’+y’+y=0的通解.
admin
2018-06-27
33
问题
解下列微分方程:
(Ⅰ)y’’-7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)y’’+a
2
y=8cosbx的通解,其中a>0,b<0为常数;
(Ⅲ)y’’’+y’’+y’+y=0的通解.
选项
答案
(Ⅰ)相应齐次方程的特征方程为λ
2
-7λ+12=0,它有两个互异的实根:λ
1
=3,λ
2
=4,所以,其通解为[*]=C
1
e
3x
+C
2
e
4x
. 由于0不是特征根,所以非齐次方程的特解应具有形式y
*
(x)=Ax+B.代入方程,可得A=[*].所以,原方程的通解为y(x)=[*]+C
1
e
3x
+C
2
e
4x
. 代入初始条件,则得 [*] 因此所求的特解为y(x)=[*](e
4x
-e
3x
). (Ⅱ)由于相应齐次方程的特征根为±ai,所以其通解为[*]=C
1
cosax+C
2
sinax.求原非齐次方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Acosbx+Bsinbx,将其代入原方程,则得 [*] 所以,通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. ②当a=b时,特解的形式应为Axcosax+Bxsinax,代入原方程,则得 A=0,B=[*] 原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
,C
2
为任意常数. (Ⅲ)这是一个三阶常系数线性齐次方程,其相应的特征方程为λ
3
+λ
2
+λ+1=0,分解得(λ+1)(λ
2
+1)=0,其特征根为λ
1
=-1,λ
2,3
=±i,所以方程的通解为 y(x)=C
1
e
-x
+C
2
cosx+C
3
sinx,其中C
1
,C
2
,C
3
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lik4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多解的情形下,试求出一般解.
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
已知曲线在直角坐标系中由参数方程给出:求y(x)的凹凸区间及拐点.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
设f(x)在(一∞,+∞)内一阶可导,求证:若f(x)在(一∞,+∞)内二阶可导,又存在极限,则存在ξ∈(一∞,+∞),使得f’’(ξ)=0.
设f(x)在(一∞,+∞)是连续函数,求初值问题的解y=φ(x);
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
设f(t)连续并满足f(t)=cos2t+∫0tf(s)sinsds,求f(t)。
随机试题
简述经济全球化的特点。
区域Ω是由平面z=0,x2+y2+z2=1(z≤0)所围成的闭区域,则
宫颈癌最多的是()
陈某,65岁,因2型糖尿病需注射胰岛素,出院时护士对其进行健康教育,不正确的一项是
甲国人汉森在乙国注册了某投资公司,该投资公司的实际控制管理中心在甲国。汉森则半年在甲国,半年在乙国。甲乙两国均认为汉森是其纳税义务人.在公司纳税人上,乙国采取实际控制与管理中心所在地标准。两国之间没有涉及征税的协议。依相关规则,下列正确的是哪几项?(
根据《建筑施工企业安全生产许可证管理规定》,下列选项中说法正确的有()。
竞买人一经应价,( ),但当其他竟买人有更高应价时,其应价即丧失约束力。
按思维发展水平的不同,可分为()。
It’stoughlookingforajobthesedays.
Astudycomparingpricesin150majorcitieshasfoundthatcitiesinWesternEuropehavebecomemoreexpensivetoliveinsince
最新回复
(
0
)