首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(A),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(A),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2017-01-21
69
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(A),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
构造辅助函数F(x)=f(x)—g(x),由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*] (a,b),使F(c)=0。 在区间[a,c],[c,b]上分别应用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ
1
)=F’(ξ
2
)=0。 再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理知,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),有F"(ξ)=0,即f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/MQH4777K
0
考研数学三
相关试题推荐
将函数y=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
用洛必达法则求下列极限:
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
设函数f(x)任点x=a处可导,则函数丨f(x)丨在点x=a处不可导的允分条件是
求下列图形的面积:(1)三叶玫瑰线ρ=cos3ψ的一叶;(2)心脏线ρ=1-sinψ所围的区域;(3)位于圆周ρ=3cosψ的内部及心脏线ρ=1+cosψ的外部的区域;(4)由双曲螺线ρψ=1,圆周ρ=1,ρ=3及极轴所围成的较小的那个区域.
设f(x,y)为区域D内的函数,则下列各种说法中不正确的是().
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得__________.
随机试题
人体生命活动的原动力是()
桃子中所含碳水化合物主要为
A、消食导滞,和中止泻B、清热利湿,清肠止泻C、疏风散寒,理气化湿D、健脾益气,助运止泻E、健脾温肾,固涩止泻患儿大便质稀色淡,夹有泡沫,臭气不甚,肠鸣腹痛,伴有发热,鼻塞流清涕,舌苔薄白,脉浮紧。其治法是
肉桂厚朴
某公司向规划局交纳了一定费用后获得了该局发放的建设用地规划许可证。刘某的房屋紧邻该许可规划用地,刘某认为建筑工程完成后将遮挡其房屋采光,向法院起诉请求撤销该许可决定。下列哪一说法是正确的?(2013年卷二第47题)
住房公积金管理的中心环节是()。
王霸字元伯,颍川颍阳人也。汉兵起,光武过颍阳,遂从击破王寻、王邑于昆阳。及光武为大司马,以霸为功曹令史,从度河北。宾客从霸者数十人,稍稍引去。光武谓霸曰:“颍川从我者皆逝,而子独留。努力!疾风知劲草。”及王郎起,光武在蓟,郎移檄购光武。光武即南驰至下曲阳。
某交响乐团招聘新团员,拟录用名单共有9人,其中有3个南方人,1个男士,2个20岁,2个近视眼,1个女士,1个广两人,还有1个北方人。以上涉及了全部成员。以下各项断定都有可能解释以上陈述,除了:
向直线上掷一随机点,假设随机点落入区间(一∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(一∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x的点得x分.试求得分x的分
______thatasocietyliketheNationalSocietyforthePreventionofCrueltytoChildrenisstillneededinacivilizedcountry?
最新回复
(
0
)