首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
[2005年] 设D={(x,y)∣x2+y2≤√2,x≥0,y≥0),[1+x2+y2]表示不超过1+x2+y2的最大整数,计算二重积分xy[1+x2+y2]dxdy.
admin
2019-05-10
74
问题
[2005年] 设D={(x,y)∣x
2
+y
2
≤√2,x≥0,y≥0),[1+x
2
+y
2
]表示不超过1+x
2
+y
2
的最大整数,计算二重积分
xy[1+x
2
+y
2
]dxdy.
选项
答案
首先去掉取整符号,写出被积函数的具体分区域的表达式,再将积分区域D分成两部分,最后利用极坐标计算. 去掉取整符号将被积函数分块表示: xy[1+x
2
+y
2
]=[*] 相应地,D也分成两块D=D
1
∪D
2
,其中 D
1
={(x,y)∣x
2
+y
2
<1,z≥0,y≥0),D
2
={(x,y)∣1≤x
2
+y
2
≤√2,x≥0,y≥0), 作极坐标变换.因r=[*]=(√2)
1/2
=2
1/4
,有 D
1
={(r,θ)∣0≤θ≤π/2,0≤r≤1),D
2
={(r,θ)∣0≤θ≤π/2,0≤r≤2
1/4
), 则[*]xy[1+x
2
+y
2
]dxdy=[*]xydxdy+[*]2xydxdy =∫
0
π/2
dθ∫
0
1
r
2
cosθsinθ.rdr+2∫
0
π/2
dθ∫
1
2
1/4
r
2
cosθsinθ·rdr =∫
0
π/2
cosθsinθdθ·[*]r
4
∣
0
1
+2∫
0
π/2
cosθsinθdθ·[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/MVV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
求不定积分
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设f(χ)二阶连续可导且f(0)=f′(0)=0,f〞(χ)>0.曲线y=f(χ)上任一点(χ,f(χ))(χ≠0)处作切线,此切线在χ轴上的截距为u,求.
已知,求a,b的值.
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
[2018年]设函数f(x)=若f(x)+g(x)在R上连续,则().
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
随机试题
A.头低卧位B.高半坐位C.低半坐位D.侧卧位E.平卧位(2004年第107题)食管癌手术全麻清醒后,病人应采取的体位是
患儿,男,3岁。其母代诉,3天来口痛,拒食饭菜,只喝牛奶,渴喜冷饮,烦躁不安,睡眠不宁,大便2日未解,小便短黄。身热,面赤,舌尖红,舌面多处溃烂,舌苔黄,脉数,体温38.9℃。该患者可辨证为
不属于消化腺的是()。
在核对旅行日程时,当出现与原计划不符且又涉及接待规格的情况,无论什么理由,地陪均应予以婉言拒绝。()
依次填入下列各句括号内的词语,与句意最贴切的一组是:(1)人类虽然已进入地球村时代,但是曾经的同学、好友近在咫尺却不能谋面,我们会(),往往又擦肩而过。(2)在圣诞节那天,广场上的城堡中不时传出圣诞歌曲,很多外国人()地
()是调整事业单位工作人员岗位、工资及续订聘用合同的依据。
开:关
若A可逆且A~B,证明:A*~B*;
Almostallcompaniesinvolvedinnewproductionanddevelopmentmust______.
ItisknowntousthatEnglishisnotasoldasChinese,butitiswidelyusedbymostpeopleallovertheworld.Englishspeake
最新回复
(
0
)