首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求此齐次方程组的一个基础解系和通解.
求此齐次方程组的一个基础解系和通解.
admin
2019-07-19
61
问题
求此齐次方程组的一个基础解系和通解.
选项
答案
①用初等行变换将系数矩阵化为阶梯形矩阵 [*] 则系数矩阵的秩为2,小于未知数个数4,此齐次方程组有非零解. 进一步把阶梯形矩阵化为简单阶梯形矩阵: [*] ②选定自由未知量x
2
,x
4
,x
5
,用它们表示出待定未知量,得到同解方程组: [*] (一般情况都把阶梯形矩阵的台角所在列号对应的未知量(如本题中的x
1
,x
3
)作为待定未知量,其他未知量作为自由未知量.这样得到的同解方程组直接用自由未知量表示出待定未知量) ③对自由未知量赋值,决定基础解系. 一般做法为让自由未知量轮流地取值1(其他未知量取值0),这样得到的一组解为基础解系,如本题的一个基础解系为: η
1
=(一2/3,1,0,0,0)
T
,η
2
=(一1/3,0,0,1,0)
T
,η
3
=(一2/9,0,一1/3,0,1)
T
, ④写出通解c
1
η
1
+c
2
η
2
+c
3
η
3
,其中c
1
,c
2
,c
3
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVc4777K
0
考研数学一
相关试题推荐
假定所涉及的反常积分(广义积分)收敛,证明:∫—∞+∞f(x一)dx=∫—∞+∞f(x)dx.
求I=,y=x及x=0所围成区域.
计算∮L,其中,L是圆周x2+y2=4x(见图9.1).
说明下列事实的几何意义:(Ⅰ)函数f(x),g(x)在点x=x0处可导,且f(x0)=g(x0),f’(x0)=g’(x0);(Ⅱ)函数y=f(x)在点x=x0处连续,且有=∞.
求下列旋转体的体积V:(Ⅰ)由曲线x2+y2≤2x与y≥x确定的平面图形绕直线x=2旋转而成的旋转体;(Ⅱ)由曲线y=3一|x2—1|与x轴围成封闭图形绕直线y=3旋转而成的旋转体.
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设n阶矩阵A与B等价,则必有
求微分方程y’cosy=(1+cosxsiny)siny的通解.
已知(X,Y)的概率分布为(Ⅰ)求Z=X—Y的概率分布;(Ⅱ)记U1=XY,V1=求(U1,V1)的概率分布;(Ⅲ)记U2=max(X,Y),V2=min(X,Y),求(U2,V2)的概率分布及U2V2的概率分布.
质点P沿以AB为直径的半圆从点A(1,2)到点B(3,4)运动,受力F的作用,力的大小等于|OP|,方向垂直于线段OP且与y轴的夹角为锐角,求力F所做的功.
随机试题
Inourculture,thesourcesofwhatwecallasenseof"mastery"—feelingimportantandworthwhile—andthesourcesofwhatwecal
关于椎体压缩性骨折的MRI表现,错误的是
关于CT密度分辨率测试的表述,正确的是
高渗性脱水的判断指标是
A.下肢腱反射无改变B.膝腱反射减弱或消失C.跟腱反射减弱或消失D.下肢病理反射征阳性E.下肢腱反射亢进
A.盗汗B.自汗C.战汗D.大汗E.无汗经常汗出活动后加重()。
背景A建筑安装工程公司以施工总承包的方式承接某大厦工程施工,在征得建设单位同意后将基坑工程分包给具备相应资质条件的B建筑公司。就双方的相关责任划分,分包合同中作出如下约定:B公司对其施工范围内的工程施工总平面布置可自行确定和修改;B公司负责编制施工组织设
卧薪尝胆:勾践()
阅读下面材料,回答问题。窗外人生王呈
[*]
最新回复
(
0
)