首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-04-11
99
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
n
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换x=Py,使x
T
Ax=[*]=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
,…,λ
n
,它们全都大于0,可知A
k
为正定矩阵。 (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVw4777K
0
考研数学一
相关试题推荐
设A从原点出发,以固定速度v0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度v1朝A追去,求B的轨迹方程。
设f(x)在R上是以T为周期的连续奇函数,则下列函数中不是周期函数的是()。
设函数f(x)可导且0≤f’(x)≤,对任意的xn,作xn+1=f(xn)(n=0,1,2,…)证明:存在且满足方程f(x)=x.
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。设x=(x1,x2,x3)T,求方程xTAx=0的全部解。
设(a>0),A是3阶非零矩阵,且ABT=0,则方程组Ax=0的通解为()
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
设D为由y=,与y=1-所围区域,计算I=dxdy
设y=f(x)由参数方程确定,则nf(2/n)=________
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
一质量为m的飞机,着陆时的水平速度为v0,经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k>0).问从着陆点算起,飞机滑行的最长距离是多少?
随机试题
美国:墨西哥
患者于某,女性,58岁。两年前曾患“中风”,经治已愈,之后逐渐出现善忘呆滞,言语模糊不清,行为古怪孤僻,时哭时笑,诊见两目黯晦,舌黯,脉细涩。若病人日久兼气血不足应
第一个用于临床的磺酰脲类降糖药结构上属于低聚糖药物,可竞争性地抑制葡萄糖苷酶
大中型药品零售企业的质量负责人药品零售连锁门店的质量管理负责人
在项目生命周期中,融资服务需要解决的问题涉及()
某项目总投资为2000万元,分3年均衡发放,第一年投资500万元,第二年投资1000万元,第三年投资500万元,建设期内年利率为10%,则建设期贷款利息共计( )万元。
根据下面材料,回答下列题目:假定1年期零息债券面值为100元,现价为94.34元,而2年期零息债券现价为84.99元。某投资者考虑购买2年期每年付息的债券,面值为100元,年息票利率为12%。2年期零息债券的到期收益率是______;2年期有息债券的
下列不属于操作风险损失事件收集工作应坚持的原则的是()。
体育锻炼课是我国中小学最普遍、最有保障的一种课余体育活动形式。
What%theword"saying"(Line1,Para1)inthispassagemean?Whichindustrydoeshisfriendengagein?
最新回复
(
0
)