首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-04-11
104
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
n
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换x=Py,使x
T
Ax=[*]=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
,…,λ
n
,它们全都大于0,可知A
k
为正定矩阵。 (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVw4777K
0
考研数学一
相关试题推荐
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
设y(x)是微分方程y"+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则().
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。求λ的值及矩阵A;
设D为有界闭区域,z=f(x,y)在D上二阶连续可导,且在区域D内满足:,则()。
函数的麦克劳林公式中x4项的系数是__________.
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)求容器的容积V
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
用指定的变量替换法求:
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
A.十二指肠上部B.十二指肠下部C.十二指肠升部D.十二指肠降部E.十二指肠空肠曲十二指肠球位于()
糖化血红蛋白的临床意义包括
磨牙后垫位于
钢结构涂装工程中,防腐涂料、涂装遍数、涂层厚度应符合设计要求,当设计对涂层厚度无要求时,涂层干漆膜正确的有()。
企业从应付职工工资中代扣的职工房租,应借记的会计科目是()。
企业收到政府无偿拨付的用于购买节能设备的补助款时,应贷记的会计科目为()。
根据社会保险法律制度的规定,下列社会保险项目中,仅由用人单位缴纳社会保险费的是()。
AB血型人的红细胞膜上和血清中分别含()。
目前市场上出售的台式PC机中Pentium4微处理器的主频一般为
WhichofthefollowingsentencesisINCORRECT?
最新回复
(
0
)