首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶实对称矩阵.证明: (1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx. (2)若A正定,则对任意正整数k,An也是对称正定矩阵. (3)必可找到一个数a,使A+aE为对称正定矩阵.
admin
2016-04-11
110
问题
设A是n阶实对称矩阵.证明:
(1)存在实数c,使对一切x∈R
n
,有|x
T
Ax|≤cx
T
x.
(2)若A正定,则对任意正整数k,A
n
也是对称正定矩阵.
(3)必可找到一个数a,使A+aE为对称正定矩阵.
选项
答案
(1)设A的特征值为λ
1
,λ
2
,…,λ
n
.令c=max{|λ
1
|,|λ
2
|,…,|λ
n
|},则存在正交变换x=Py,使x
T
Ax=[*]=cy
T
y=cx
T
x. (2)设A的特征值为λ
1
,…,λ
n
,则λ
i
>0(i=1,…,n),于是,由A
k
的特征值为λ
1
,…,λ
n
,它们全都大于0,可知A
k
为正定矩阵。 (3)因为(A+aE)
T
=A+aE,所以A+aE对称.又若A的特征值为λ
1
,…,λ
n
,则A+aE的特征值为λ
1
+a,…,λ
n
+a.若取a=max{|λ
1
|+1,…,|λ
n
|+1},则λ
i
+a≥λ
i
+|λ
i
|+1≥1,所以A+aE正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/MVw4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:存在ξ∈(a,b),使得
设矩阵为A*对应的特征向量。求a,b及α对应的A*的特征值。
设fn(x)=x+x2+…+xn(n≥1).证明:方程fn(x)=1有唯一的正根xn.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1,证明:|f(x)|≤1.
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
设y=f(x)由参数方程确定,则nf(2/n)=________
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
随机试题
计算机能直接执行的是()。
ERG的α波来源于
A.气B.血C.寒D.热E.实
小儿夏季热的临床特征除长期发热外,还见
当发生手足搐搦症时,说明其血钙已低于
下列哪项不属于急性特发性血小板减少性紫癜患者的临床表现?
下列关于开具发票的说法,正确的有()。
可转换证券的价值有()
手表公司销售某品牌的高档手表与普通手表组成成套产品20套,每套不含税售价18000元,其中,高档手表的生产成本10000元/只,普通手表的生产成本2000元/只。另将同类型手表各20只用于奖励优秀职工(未包装)。该手表公司应就上述业务缴纳消费税()元。
教师在教学过程中的表率作用主要体现在()。
最新回复
(
0
)