首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是( ).
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是( ).
admin
2022-07-21
53
问题
设函数P(x),q(x),f(x)在区间(a,b)上连续,y
1
(x),y
2
(x),y
3
(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c
1
,c
2
为两个任意常数,则该方程的通解是( ).
选项
A、c
1
y
1
+(c
2
-c
1
)y
2
+(1-c
2
)y
3
B、c
1
y
1
+(c
2
-c
1
)y
2
+(c
1
-c
1
)y
1
C、(c
1
+c
2
)y
1
+(c
2
-c
1
)y
2
+(1-c
2
)y
3
D、(c
1
+c
2
)y
1
+(c
2
-c
1
)y
2
+(c
1
-c
2
)y
3
答案
A
解析
A中解的形式可改写为C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
3
.由于y
1
,y
2
,y
3
是二阶非齐次线性微分方程的三个线性无关的解,因此y
1
-y
2
,y
2
-y
3
是对应的齐次线性微分方程的两个线性无关的解,又因为y
3
是非齐次方程的一个特解,因此选(A).
转载请注明原文地址:https://kaotiyun.com/show/qFf4777K
0
考研数学二
相关试题推荐
设f(x)是不恒为零的奇函数,且f’(0)存在,则g(x)=().
设在区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)],则().
微分方程y"+2y’+y—=shx的一个特解应具有形式(其中a,b为常数)()
设函数f(x)在点x0的某邻域内具有一阶连续导数,且,则()
设y=y(χ,z)是由方程eχ+y+z=χ2+y2+z2确定的隐函数,则=_______.
(Ⅰ)下列可表示由双纽线(x2+y2)2=x2-y2围成平面区域的面积的是________.(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及x轴围成平面图形的面积S=________.
设二元可微函数F(x,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成F(x,y)=H(r)(r=),求此二元函数F(x,y).
设曲线L的方程为(1)求L的弧长;(2)设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标.
设一平面垂直于xOy面,并通过点(1,一1,1)到直线的垂线,求此平面方程.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
随机试题
将函数展开为x一1的幂级数,并指出收敛区间(不考虑端点).
矿山井巷工程的开拓方式分为()。
客户对交易结算报告的内容有异议的,应当在期货交易所规定的时间内向期货公司提出书面异议。()
要保持一国长期的经济增长,政府可以选择的经济政策包括()。[2003年真题]
投资者对某项资产合理要求的最低收益率,称为()。
资产负债表是根据()这一会计等式编制而成的。
在20世纪30年代,人们已经发现了一种有绿色和褐色纤维的棉花。但是,直到最近培育出此种棉花的长纤维品种后,它们才具备了机纺的条件,才具有了商业价值。由于此种棉花不需要染色,加工企业就省去了染色的开销,并且避免了由染色工艺流程带来的环境污染。从题干可以推出以
马克思认为,科学是“历史的有力杠杆”,是“最高意义上的革命力量”。这句话表明()
设f(x)二阶连续可导,f′(0)=0,且则().
ReadingPassage2hastenparagraphs,A-J.Whichparagraphsstatethefollowinginformation?WritetheappropriatelettersA
最新回复
(
0
)