首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,则对线性方程组(I)aX=0和(Ⅱ)ATAX=0,必有 ( )
设A为n阶实矩阵,则对线性方程组(I)aX=0和(Ⅱ)ATAX=0,必有 ( )
admin
2020-03-01
64
问题
设A为n阶实矩阵,则对线性方程组(I)aX=0和(Ⅱ)A
T
AX=0,必有 ( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
A
解析
方程AX=0和A
T
AX=0是同解方程组.
转载请注明原文地址:https://kaotiyun.com/show/MgA4777K
0
考研数学二
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=______。
计算(a>0)=_______.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’(2)=____________.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=________.
设z=f(χ,y)在区域D有连续偏导数,D内任意两点的连线均属于D.求证:对A(χ0,y0),B(χ0+△χ,y0+△y)∈D,θ∈(0,1),使得f(χ0+△χ,y0+△y)-f(χ0,y0)=
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,
(89年)确定函数的单调区间.极值,凹向,拐点及渐近线.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_______。
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
随机试题
下列福利中,属于企业补充福利的是()。
什么是职务序列?简述我国公务员职务序列的类型。
声音传向内耳的主要途径是()
下列哪几项不包括在世贸组织货物贸易法律体系内?()
教师的教育机智充分表现了教师劳动的()。
道德教育的认知模式是现代教育理论中流行最为广泛、占据主导地位的教育学说。()
越来越多的人成了互联网追新潮的盲从者,他们生怕自己惯用的虚拟身份在某个网络社区被别人抢先占据。这种场面似乎与1999年前后免费电子邮箱热潮有些相似,当时的统计显示,每个互联网用户平均注册了8.6个电子邮箱。可到2005年,这些邮箱只有18%还在使用,每个互
下列学堂类型不属于洋务学堂的是
结合材料回答问题:材料1在当代,科学技术发展在造福人类的同时,“全球问题”日益引起人们关注。人口增长过快、粮食短缺、能源和资源枯竭、环境污染和生态破坏等问题日益突出。“全球问题”的出现.深刻地反映了人类与自然的矛盾。“全球问题”不仅是个自然问题、科学技术
Thegovernmentistobanpaymentstowitnessesbynewspapersseekingtobuyuppeopleinvolvedinprominentcases21thetrialo
最新回复
(
0
)