首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a). (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a). (Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫23φ(x)dx,则至少存在一点
admin
2019-04-05
81
问题
[2008年] (I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得f(x)dx=f(η)(b一a).
(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫
2
3
φ(x)dx,则至少存在一点ξ∈(1,3),使得φ″(ξ)<0.
选项
答案
利用介值定理证明(I),利用积分中值定理和拉格朗日中值定理证明(Ⅱ). 证 (I)设M和m分别为函数f(x)在区间[a,b]上的最大值及最小值,则 m(b一a)≤∫
a
b
f(x)dx≤M(b-a). 在以上不等式两边各除以b一a,得到 m≤[*]∫
a
b
f(x)dx≤M. 这表明确定的数[*]∫
a
b
f(x)dx介于函数f(x)的最小值m及最大值M之间.由闭区间上连续函数的介值定理知,在[a,b]上至少存在一点η,使得函数f(x)在点η处的值与这个确定的数值相等,即应有 [*]∫
a
b
f(x)dx=f(η) (a≤η≤b). 两端各乘以b-a,即得所要证的等式. (Ⅱ)由(I)的结论知,至少存在一点η∈[2,3],使 ∫
2
3
2φ(x)dx=φ(η)(3-2)=φ(η),2≤η≤3. 又由φ(2)>∫
2
3
φ(x)dx=φ(η),φ(2)>φ(1)知,对φ(x)分别在[1,2]及[2,η]上使用拉格朗日中值定理,得到 φ′(ξ
1
)=[*]>0, 1<ξ
1
<2, φ′(ξ
2
)=[*]<0, 2<ξ
2
<η≤3. 在[ξ
1
,ξ
2
]上对导函数φ′(x)使用拉格朗日中值定理,得到 φ″(ξ)=[*]<0, ξ∈(ξ
1
,ξ
2
)[*](1,3).
解析
转载请注明原文地址:https://kaotiyun.com/show/yXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
已知a,b,c不全为零,证明方程组只有零解.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
判断下列函数的单调性:
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)