首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2019-07-22
80
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0[*]x
1
α
2
+x
2
α
3
+…+x
n-1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n-1
Aα
n
=0[*]x
1
α
3
+x
2
α
4
+…+x
n-2
α
n
=0 … x
1
α
n
=0 因为α
n
≠0,所以x
1
=0,反推可得x
2
=…x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*],令P=(α
1
,α
2
,…,α
n
),则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0[*]λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/MhN4777K
0
考研数学二
相关试题推荐
当χ→0时,(1+χsin2χ)a-1~1-cosχ,求a.
求微分方程χy〞+3y′=0的通解.
曲线y=(x一1)3(x一3)2的拐点个数为()
求曲线y=与χ轴所围成的平面区域绕y轴旋转而成的几何体的体积.
累计积分dθ∫0cosθf(rcosθ,rsinθ)rdr可以写成()
计算二重积分(x0+4x+y0)dxdy,其中D是曲线(x0+y0)0=a0(x0-y0)围成的区域.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
求极限.
随机试题
根据营养分析的结果,对食谱所用的_______进行调整,使其符合膳食平衡要求。
车辆因故障必须在高速公路停车时,应在车后方________处设置故障警告标志,夜间还需开启示廓灯和后位灯。
每个社会成员都应该爱护公共财物,如对公园里的花木草地、街道两旁的电话邮筒、影剧院里的座位音响、马路上的井盖路标等加以保护,不损坏、不滥用、不浪费、不私占。这是属于()
急性起病的神经系统疾病有
建设工程监理规划编写的依据包括( )。
首次公开发行股票,对于募集资金的使用,下列符合相关规定的有( )。
教育要遵循个体身心发展的规律。《学记》中“当其可之谓时,时过然后学则勤苦而难成”这句话反映了人身心发展过程中存在的()现象。
碳汇造林正逐渐成为北方某市市民履行义务植树责任的形式之一。在经过几十年的营造和平原大造林后,该市适宜大规模造林的地方越来越少,由于路途遥远、交通问题、活动统筹困难等原因,组织大型植树活动也越来越困难,而人人都能参加的碳汇造林从根本上解决了这个问题。相关细则
若某文件系统的目录结构如下图所示,假设用户要访问文件rw.dll,且当前工作目录为swtools,则该文件的全文件名为_______(1),相对路径和绝对路径分别为_______(2)。(1)
ThepopulationoftheUnitedStatesisonly6%oftheworld’spopulation,butAmericans【21】______onethirdofalltheener
最新回复
(
0
)