首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
admin
2016-10-26
99
问题
设总体X在区间[0,θ]上服从均匀分布,X
1
,X
2
,…,X
n
是取自总体X的简单随机样本,
X
(n)
=max(X
1
,…,X
n
).
(Ⅰ)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b,使
=bX
(n)
均为θ的无偏估计,并比较其有效性;
(Ⅲ)应用切比雪夫不等式证明:
均为θ的一致性(相合性)估计.
选项
答案
(Ⅰ)依题意总体X的密度函数、分布函数分别为 [*] 令μ=EX=[*],解得θ=2μ,于是θ的矩估计量为[*] 又样本X
1
,…,X
n
的似然函数为 [*] L(θ)为θ的单调减函数,且0≤x
i
≤θ,即θ要取大于x
i
的一切值,因此θ的最小取值为max(x
1
,…,x
n
),θ的最大似然估计量[*]=max(X
1
,…,X
n
)=X
(n)
. (Ⅱ)由于EX=[*]为θ的无偏估计,且[*] 为求得b,必须求X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x),由X
(n)
=max(X
1
,…,X
n
)得 [*] [*] 从而[*]为θ的一致性估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mmu4777K
0
考研数学一
相关试题推荐
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
设函数f(x)在[a,b]上连续,且在(a,b)内有fˊ(x)>0.证明:在(a,b)内存在唯一的ε,使曲线y=f(x)与两直线y=f(ε),x=a所围平面图形面积s1是曲线y=f(x)与两直线y=f(ε),x=b所围平面图形面积S2的3倍.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
患者,男,22岁。右下后牙牙龈肿痛3天。检查见右下第一磨牙颊侧牙龈局限性隆起,波动感,牙周袋深,牙齿无龋坏,冷测有痛感。根据上述症状该患者最可能的诊断
所设置的会计科目应符合单位自身特点,满足单位实际需要,这一点符合()原则。
最早创立自然主义体育思想的教育家是()。
阅读材料,回答下列问题。材料一有学者认为,在16—19世纪中叶的世界经济发展中,英国的地位步步上升,最终独占鳌头,成为世界经济体系中的最大剥削者。下表所列为英国在这一进程中发生的历史事件。材料二“二战”后世界经济演进的路线.是
A.下叶后基底段B.上叶后段或下叶背段C.上叶尖后段和下叶背段D.上叶下部或下叶上部近胸膜处继发性肺结核好发于
Theyreportedthelossandgaveallthenecessary______topolice.
下列关于制宪权的表述,正确的是()。
在中国,只有富士山连锁店经营日式快餐。如果上述断定为真,以下哪项不可能为真?Ⅰ.苏州的富士山连锁店不经营日式快餐。Ⅱ.杭州的樱花连锁店经营日式快餐。Ⅲ.温州的富士山连锁店经营韩式快餐。
Everyhumanbeing,【C1】______whatheisdoing,givesoffbodyheat.Theusualproblemis【C2】______disposeofit.Butthedesigner
Doctorssayangercanbeanextremelydamagingemotionunlessyoulearnhowtodealwithit.Theywarnthatangryfeelingscan【C
最新回复
(
0
)