首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
admin
2016-10-26
100
问题
设总体X在区间[0,θ]上服从均匀分布,X
1
,X
2
,…,X
n
是取自总体X的简单随机样本,
X
(n)
=max(X
1
,…,X
n
).
(Ⅰ)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b,使
=bX
(n)
均为θ的无偏估计,并比较其有效性;
(Ⅲ)应用切比雪夫不等式证明:
均为θ的一致性(相合性)估计.
选项
答案
(Ⅰ)依题意总体X的密度函数、分布函数分别为 [*] 令μ=EX=[*],解得θ=2μ,于是θ的矩估计量为[*] 又样本X
1
,…,X
n
的似然函数为 [*] L(θ)为θ的单调减函数,且0≤x
i
≤θ,即θ要取大于x
i
的一切值,因此θ的最小取值为max(x
1
,…,x
n
),θ的最大似然估计量[*]=max(X
1
,…,X
n
)=X
(n)
. (Ⅱ)由于EX=[*]为θ的无偏估计,且[*] 为求得b,必须求X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x),由X
(n)
=max(X
1
,…,X
n
)得 [*] [*] 从而[*]为θ的一致性估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mmu4777K
0
考研数学一
相关试题推荐
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
将13个分别写有A、A、A、C、E、H、I、I、M、M、N、T、T的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN”的概率.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
试证明函数f(x)=(1+1/x)x在区间(0,+∞)内单调增加.
随机试题
台湾问题的本质是()
“餐叉样畸形”是下列哪种损伤的典型体征
驱虫药的服用时间是
火场逃生中以湿毛巾掩口鼻呼吸,降低姿势,可以减少吸入浓烟。()
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
DB2数据库管理系统为了提高性能,当连接所涉及的事实表达到三个或三个以上的时候,DB2可自动地判断是否使用星型连接技术(starjoin)和______索引进行优化。
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
Scientistsknowthattherearetwobasicapproachestoprolongingforlife.Oneapproachisthe【79】ofthediseasethatgenerally
Those______ascommitteememberswillattendthemeeting.
Listeningtomusicwhileyoudrivecanimproveyourreactiontimeandabilitytoavoidhazards,accordingtoAustralianpsycholo
最新回复
(
0
)