首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn). (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性; (Ⅲ)应用切比雪夫不
admin
2016-10-26
114
问题
设总体X在区间[0,θ]上服从均匀分布,X
1
,X
2
,…,X
n
是取自总体X的简单随机样本,
X
(n)
=max(X
1
,…,X
n
).
(Ⅰ)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b,使
=bX
(n)
均为θ的无偏估计,并比较其有效性;
(Ⅲ)应用切比雪夫不等式证明:
均为θ的一致性(相合性)估计.
选项
答案
(Ⅰ)依题意总体X的密度函数、分布函数分别为 [*] 令μ=EX=[*],解得θ=2μ,于是θ的矩估计量为[*] 又样本X
1
,…,X
n
的似然函数为 [*] L(θ)为θ的单调减函数,且0≤x
i
≤θ,即θ要取大于x
i
的一切值,因此θ的最小取值为max(x
1
,…,x
n
),θ的最大似然估计量[*]=max(X
1
,…,X
n
)=X
(n)
. (Ⅱ)由于EX=[*]为θ的无偏估计,且[*] 为求得b,必须求X
(n)
的分布函数F
(n)
(x)及密度函数f
(n)
(x),由X
(n)
=max(X
1
,…,X
n
)得 [*] [*] 从而[*]为θ的一致性估计.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mmu4777K
0
考研数学一
相关试题推荐
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
测定乳及乳制品中膳食纤维的含量时,高脂肪样品脂肪的质量分数大于10%,用石油醚去脂。
先天性畸形的发生原因。
【2001年第155题】一住宅建造在地质年代较久的地基土上,地下水位不变,对地基变形的论述,下列何种说法是正确的?
企业发生视同销售行为,在计算增值税和消费税时,若没有同类消费品销售价格时,按照组成计税价格计算纳税。组成计税价格为( )。
以下()不属于非现场调查。
浙江省()是“丝绸之府”,传统的含山蚕花节,主要民俗活动有背蚕种包、上山踏青等。
进入2012年以来,一些企业开始审慎评估之前的并购效果以及新的并购机会,海外并购开始趋于理性化、审慎化。2005年中国企业海外并购事件开始发生,2008年并购进入活跃阶段。从有关资料了解到,2005—2012年,中国企业完成的196件海外并购事件分布于三
在人们的认识领域里,心理学总是被蒙上一层神秘的面纱,认为心理学____________,离我们的生活很遥远。实际上,心理学与我们的日常生活紧密相连,心理学____________在生活的表象之下,支配着人们的行动。填入划横线部分最恰当的一项是()。
Peoplefromdifferentculturessometimesdothingsthatmakeeachotheruncomfortable,sometimeswithoutrealizingit.MostAmer
Musicinhighereducation:whatisitworth?A)Musichasfounditselfincreasinglycentralinthesubjectcontroversysurroundin
最新回复
(
0
)