首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)上有界.
设f(x)在(一∞,+∞)连续,存在极限f(x)=B.证明: (Ⅰ)设A<B,则对ξ∈(一∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(一∞,+∞)上有界.
admin
2017-10-23
66
问题
设f(x)在(一∞,+∞)连续,存在极限
f(x)=B.证明:
(Ⅰ)设A<B,则对
ξ∈(一∞,+∞),使得f(ξ)=μ;
(Ⅱ)f(x)在(一∞,+∞)上有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]f(x)=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,f(X
1
)<μ<f(X
2
),由连续函数介值定理知[*](一∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*]f(x)=B,由存在极限的函数的局部有界性定理可知,[*]X
1
,使得当x∈(一∞,X
1
)时f(x)有界;[*]X
2
(>X
1
),使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(一∞,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/MoX4777K
0
考研数学三
相关试题推荐
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
求微分方程xy"+2y’=ex的通解.
微分方程y"一4y=x+2的通解为().
证明:
设f(x)在[a,b]上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξ(x)dx=∫ξbf(x)dx.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,n为常数,且对一切x有|d(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
随机试题
某产妇,产后母乳喂养不顺利,改为人工喂养。产后一周左右产妇出现焦虑情绪,易激惹,有时暗自伤心落泪,伴有失眠、便秘等躯体症状。产后两周时,产妇的情绪越来越低落,回避他人,对自己缺乏信心,并因自己不会照顾小孩而有负罪感,有自杀念头。社区护士应提供的护理措施
A、HethinksBakeristoostrictinclass.B、HethinksBakerisnotstraightforward.C、Hethinkssheisunfair.D、Shedoesnotex
外科急腹症的特点,正确的是
当前城市规划管理工作的重要任务是()。
防水混凝土可通过调整配合比,或掺加外加剂、掺合料等措施配制而成,其抗渗等级不得小于(),其试配混凝土的抗渗等级应比设计要求提高()MPa。
导游的素质要求包括()。
幼儿园选择教育内容的依据是()。
《2016年政府工作报告》指出,改革是引领发展的第一动力,必须摆在国家发展全局的核心位置,深入实施创新驱动发展战略。()
Anewreportclaimsthatthemakersofsugar-laden(含糖)drinkssuchassodas,sportsdrinks,energydrinksandfruitdrinkstaked
A、TheterribleeffectsofdroughtonCalifornia.B、Newtechnologiesusedtopreventwaterwaste.C、Amandatoryorderonwatercu
最新回复
(
0
)