首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11年)设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Aχ=β的3个线性无关的解,k1,k2为任意常数,则Aχ=β的通解为 【 】
(11年)设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Aχ=β的3个线性无关的解,k1,k2为任意常数,则Aχ=β的通解为 【 】
admin
2021-01-25
95
问题
(11年)设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Aχ=β的3个线性无关的解,k
1
,k
2
为任意常数,则Aχ=β的通解为 【 】
选项
A、
+k
1
(η
2
-η
1
).
B、
+k
1
(η
2
-η
1
).
C、
+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
).
D、
+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
).
答案
C
解析
首先,由A[
(η
2
+η
3
)]=β,知
(η
2
+η
3
)是Aχ=β的一个特解;其次,由解的性质或直接验证,知η
2
-η
1
及η
3
-η
1
均为方程组Aχ=0的解;再次,由η
1
,η
2
,η
3
线性无关,利用线性无关的定义,或由
[η
2
-η
1
,η
3
-η
1
]=[η
1
,η
2
,η
3
]
及矩阵
的秩为2,知向量组η
2
-η
1
,η
3
-η
1
线性无关,因此,方程组Aχ=0至少有2个线性无关的解,但它不可能有3个线性无关的解,于是η
2
-η
1
,η
3
-η
1
可作为Aχ=0的基础解系,Aχ=0的通解为k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
),再由非齐次线性方程组解的结构定理即知只有选项C正确.
转载请注明原文地址:https://kaotiyun.com/show/Mrx4777K
0
考研数学三
相关试题推荐
设矩阵A=,E为三阶单位矩阵。(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B。
设A=,(A-1)*是A-1的伴随矩阵,则(A-1)*=_______.
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B—2E)—1=________。
设A*是A的伴随矩阵,则(A*)-1=___________.
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是________。
已知方程组有无穷多解,则a=__________.
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1一a)T是方程组(A+E)X=0的解,则a=________.
设A为3阶矩阵,丨A丨=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则丨BA*丨=__________.
设A=,若矩阵X满足AX+2B=BA+2X,则X4=__________.
设二次型f(x1,x2,x3)=5x12+ax22+3x32-2x1x2+6x1x3-6x2x3的矩阵合同于.(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
会计基本假设是会计确认、计量和报告的前提,是对会计核算所处时间、空间环境等所作的多种推测。()
根据功能的不同,电子招标投标系统可分为()。
口渴多饮,口舌干燥,尿频量多,舌边尖红,苔薄黄,脉数。证属
简述旋覆花的功效主治。
整合集团资源,2011年7月1日A公司合并集团内部的B公司,取得80%的股权,并于当日能够对B公司实施控制。有关合并业务资料如下:1.A公司出资的资产如下:2.B公司所有者权益构成如下:3.2011年度B公司实现净利润1000万元,并宣告分派现金股利
证券公司设立集合资产管理计划,办理集合资产管理业务,设立非限定性集合资产管理计划的,净资本不低于人民币( )亿元。
分析管理层要求不实施函证的原因时,注册会计师应当保持职业怀疑态度,并且需要考虑一些特定因素,这些因素有()。
由国家补贴保险基金的保险称为()。
海空运输出口系统操作调度模块功能有()。
Ifoursocietyeverneededareadingrenaissance(复兴),it’snow.TheNationalEndowmentfortheArtsreleased"ReadingatRisk"l
最新回复
(
0
)