首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0, 证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0, 证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"
admin
2017-04-11
40
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0,
证明:
(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得 f(C)=[*]∫
a
b
f(x)dx=0。(此定理要先证明再使用) 设G(x)=e
一x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(C)=0,G’(x)=e
一x
f’(x)一e
一x
f(x)=e
一x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
1
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0,则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f"(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得F’(η)=0,故有 f"(η)=f(η),且η≠8(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/Mtt4777K
0
考研数学二
相关试题推荐
设z=u·v,x=eucosv,y=eusinv,求.
求下列函数的偏导数。
设函数f(x)连续,则二次积分等于________。
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得f(ξ)/g(ξ)=f"(ξ)/g"(ξ).
验证y=C1x5+lnx(C1,C2是任意常数)是方程x2y"-3xy’-5y=x2lnx的通解。
证明下列函数(C1,C2为任意常数)是方程xy"+2y’-xy=ex的通解。
某厂生产某种商品,其年销售量为100万件,每批生产需增加准备费1000元,而每件的库存费为.0.05元.如果年销售率是均匀的,且上批销售完后,立即再生产下一批(此时商品库存数为批量的一半),问应分几批生产,能使生产准备费及库存费之和最小?
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
随机试题
免疫系统在接受神经内分泌调节的同时,也有反向调节作用。()
下列哪一项不是国家财产所有权的特点?()。
在以下组织形式中,全职人员在项目团队中所占比例为0~25%的是()。
下列关于公安机关职责叙述正确的有。()
有唐诗作榜样是宋人的大幸,也是宋人的大不幸。看了这个好榜样,宋代诗人就学了乖,会在技巧和语言方面_________;同时,有了这个好榜样,他们也偷起懒来,_________了摹仿和依赖的惰性。填入划横线部分最恰当的一项是:
下列关于我国古代音乐作品的说法错误的是()。
判断级数的敛散性.
【21】【29】
Whatessentiallydistinguishessemanticsandpragmaticsisthenotionof
Experiencetwogreatthemeparksinonegreatscenicspots—Disney’sCaliforniaAdventureparkandrightnextdoorDisneylandPa
最新回复
(
0
)