首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(-1,1),使得f’’(η)+f’(η)=1.
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明: 存在η∈(-1,1),使得f’’(η)+f’(η)=1.
admin
2019-04-08
30
问题
[2013年] 设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:
存在η∈(-1,1),使得f’’(η)+f’(η)=1.
选项
答案
待证等式可改写成f’’(η)+[f’(η)一1]=0,即[f’(η一1]’+[f’(η)一1]=0. 两边乘以e
η
,则e
η
[f’(η)一1]’+e
η
[f’(η)一1]={e
η
[f’(η)一1]}’=0. 于是应考虑辅助函数F(x)=[f’(x)一1]e
x
. 由上题知,存在ξ∈(0,1),使f’(ξ)=1,又因f’(x)为偶函数,故f’(一ξ)=f’(ξ)=1,则 F(ξ)=[f’(ξ)一1]e
ξ
=0,F(一ξ)=[f’(一ξ)一1]e
-ξ
=[f’(ξ)一1]e
-ξ
=0. 在区间[一ξ,ξ]上对F(x)使用罗尔定理,即得存在η(一ξ,ξ) [*] (一1,1),使得F’(η)=0.由 F’(x)=e
x
[f’(x)一1]+e
x
f’’(x), 得F’(η)=e
η
[f’(η)一1]+e
η
f’’(η)=0,即f’’(η)+f’(η)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mx04777K
0
考研数学一
相关试题推荐
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x),f2(x)是连续函数,则必为概率密度的是()
假设目标出现在射程之内的概率为0.7,这时一次射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率.
已知以2π为周期的周期函数f(x)在(-∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明=x0∈(2π,)使得F″(x0)=0.
设A,B为随机事件,且求(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρ(X,Y)。
判定级数的敛散性,其中α和β为常数.
设求实对称矩阵B,使A=B2.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设n为正整数,f(x)=xn+x一1.对于(Ⅰ)中的xn,证明存在并求此极限.
随机试题
髂棘间径是骶耻内径是
包裹性心包积液可见于右房部位,常误以为心房本身,此时须全面地二维超声探查整个心脏,可借助下列哪种技术鉴别
我国允许使用的氨基酸类强化剂是
患者东某,恶寒发热,无汗头痛肢体疼痛,喘咳,舌苔薄白,脉浮紧。治宜选用()
抗酸药碳酸氢钠的特点包括
下列各项中,不应计入管理费用的是()。
导游员从接到旅行社下发的()开始,进入服务准备,到前往接站点之前均为准备阶段。
2012年12月4日,中共中央政治局召开会议,审议通过了《关于改进工作作风、密切联系群众的___________项规定》。
巴尔扎克说:事情是时刻改变的,原则是始终不变的。对此谈谈你的看法。
有下列程序 #include<stdio.h> main() {charv[4][10];inti; for(i=0;i<4;i++) scanf("%s",v[i]); printf("%c,%s,%s,%c",
最新回复
(
0
)