首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
admin
2019-01-22
109
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f
’
)﹦2e
ξ-η
。
选项
答案
首先构造辅助函数g(x)﹦2e
x
,显然g(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ∈(a,b),使得[*] 另外,再构造辅助函数F(x):e
x
f(x),F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点η∈(a,b),使得[*],即 [*] 因此可得2e
ξ
﹦e
η
[f(η)﹢f
’
(η)],即f(η)﹢f
’
(η)﹦2e
ξ-η
。 本题考查拉格朗日中值定理。由于题干中有两个中值ξ,η,因此一般会出现一个函数在两个区间上分别用中值定理或构造两个不同函数分别用中值定理。本题出现了f(x)和e的指数函数,因此需要构造两个函数分别使用中值定理。
解析
转载请注明原文地址:https://kaotiyun.com/show/MyM4777K
0
考研数学一
相关试题推荐
证明(α,β,γ)2≤α2β2γ2,并且等号成立的充要条件是α,β,γ两两垂直或者α,β,γ中有零向量.
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
证明r(A+B)≤r(A)+r(B).
已知αα1,αα2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为_____,方差为_______.
(I)设X与Y相互独立,且X~N(5,15),Y—χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
已知平面Ⅱ:x一4y+2z+9=0,直线,试求在平面Ⅱ内,经过L与Ⅱ的交点且与L垂直的直线方程.
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为Ai,i=1,2,记事件A表示事件“a12≥4a2”,则该试验的样本空间Ω=______;事件A=______;概率P(A)=__
求Pdx+Qdy在指定区域D上的原函数,其中{P,Q}=,D={y)|x>0}.
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
随机试题
“中华美食”以________的色、香、味、格、形、养、器以及精湛独创的“工匠精神”,成为“一个独特现象”和“一道亮丽风景”,令全世界________。自汉唐以来,便吸引________的外国人士,前来学习体验。填入画横线部分最恰当的一项是:
关于频谱多普勒技术,下面哪种说法是错误的
评标委员会对投标文件的评审分为()。
预制混凝土板水平运输时,叠放不宜超过()。
税务机关根据纳税人的生产设备在正常状态下的生产、销售情况,对其生产的应税产品查定产量和销售额,然后依照税法规定的税率征收税款的方式称为()。
关于“银行存款余额调节表”,下列说法正确的是()。
随着老龄化的加速,我国养老问题日益引人关注,最新的统计资料表明,我国企业退休人员已超过6000万人,基本养老金人均每月1700多元,能够维持基本生活需要;农村老人主要依靠自身劳作、每月55元或更多的养老金,以及子女能够提供的赡养费等勉强过日子,生不起病,城
给定资料材料1一颗来自澳大利亚塔斯马尼亚岛的樱桃,从靠泊洋山保税港区码头到查验后放行,最快需要多长时间?上海给出的答案是:6小时。如此迅疾的速度,得益于上海自贸区成立3年多以来致力于攻坚的核心任务——制度创新。上海自贸试验区建
开展国际营销的企业一旦在某国外市场建立了一套广泛的销售网络并取得销售的显著增长,就应该在国外市场上采取与本国类似的营销策略。因此,在开创初期.或在刚刚建立了销售代表处的国外市场上,需采取与本国不同的营销策略。以下哪项如果为真,则最能支持上述结论?
【T1】詹姆斯·菲尼摩尔·库珀在其经典小说《开拓者》中,叙述主人公——一个土地开发商,带着自己的表妹参观正在由他承建的城市。(ThePioneers)他描述了宽阔的街道、林立的房屋和热闹的都市。【T2】可是他的表妹疑惑不解,四处张望,因为她所见到的只有一
最新回复
(
0
)