首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
admin
2019-01-22
123
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f
’
)﹦2e
ξ-η
。
选项
答案
首先构造辅助函数g(x)﹦2e
x
,显然g(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ∈(a,b),使得[*] 另外,再构造辅助函数F(x):e
x
f(x),F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点η∈(a,b),使得[*],即 [*] 因此可得2e
ξ
﹦e
η
[f(η)﹢f
’
(η)],即f(η)﹢f
’
(η)﹦2e
ξ-η
。 本题考查拉格朗日中值定理。由于题干中有两个中值ξ,η,因此一般会出现一个函数在两个区间上分别用中值定理或构造两个不同函数分别用中值定理。本题出现了f(x)和e的指数函数,因此需要构造两个函数分别使用中值定理。
解析
转载请注明原文地址:https://kaotiyun.com/show/MyM4777K
0
考研数学一
相关试题推荐
已知αα1,αα2都是3阶矩阵A的特征向量,特征值分别为一1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
已知n阶矩阵A满足(A一aE)(A一bE)=0,其中a≠b,证明A可对角化.
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx+
计算曲面积分,I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
求下列空间中的曲线积分I=yzdx+3zxdy—xydz,其中L是曲线且顺着x轴的正向看是沿逆时针方向.
求下列平面上曲线积分其中L是椭圆周,取逆时针方向.
求下列平面上曲线积分,其中是沿椭圆正向从A(a,0)到(0,b)的一段弧,a≠1.
随机试题
粘滞流体在半径为R的水平管中流动,流量为Q。如果该粘滞流体在半径为R/2的水平管中流动,其流量为:
孔板流量计是()式流量计。
"Shenosoonercamehomethanshesentforthegamekeeper,andorderedhimtobringhisdaughtertoher;sayingshewouldprovid
验证:在整个Oxy面内,xy2dx+x2ydy是某个函数的全微分,并求出一个这样的函数.
关于上消化道出血哪项不正确
男,72岁。排便时突然跌倒,意识丧失,呼吸断续。有陈旧心肌梗死和糖尿病病史,无高血压病史,诊断为心脏骤停。该患者既往超声心动图检查未发现异常,其心脏骤停最可能的原因是
下列不属于口腔二级预防的是
以下属于产品开发主体信息的有()。
在各国税收体系中,()一直是地方政府财政收入的主要来源
作者去世后其财产继承人的遗作稿酬免征个人所得税。()
最新回复
(
0
)