首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
admin
2019-01-22
92
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f
’
)﹦2e
ξ-η
。
选项
答案
首先构造辅助函数g(x)﹦2e
x
,显然g(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点ξ∈(a,b),使得[*] 另外,再构造辅助函数F(x):e
x
f(x),F(x)在[a,b]上连续,在(a,b)内可导,由拉格朗日中值定理,至少存在一点η∈(a,b),使得[*],即 [*] 因此可得2e
ξ
﹦e
η
[f(η)﹢f
’
(η)],即f(η)﹢f
’
(η)﹦2e
ξ-η
。 本题考查拉格朗日中值定理。由于题干中有两个中值ξ,η,因此一般会出现一个函数在两个区间上分别用中值定理或构造两个不同函数分别用中值定理。本题出现了f(x)和e的指数函数,因此需要构造两个函数分别使用中值定理。
解析
转载请注明原文地址:https://kaotiyun.com/show/MyM4777K
0
考研数学一
相关试题推荐
证明是异面直线,并求公垂线方程及公垂线的长.
α1=(1,2,一1,0)T,α2=(1,1,0,2)T,α3=(2,1,1,a)T,α1,α2,α3生成的向量空间为2维空间,则,a=______.
已知线性方程组有解(1,一1,1,一1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设随机变量X与Y相互独立同分布,且X的概率分布为记U=max(X,Y),V=min(X,Y),试求:(I)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
已知总体X的概率密度只有两种可能,设对X进行一次观测,得样本X1,规定当时拒绝H0,否则就接受H0,则此检验犯第一、二类错误的概率α和β分别为_______.
设A,B都是对称矩阵,并且E+AB可逆,证明(E+AB)-1是对称矩阵.
求点M1(1,2,3)到直线的距离.
计算曲面积分,其中∑为圆柱面x2+y2=R2界于z=0及z=H之间的部分,r为曲面上的点到原点的距离(H>0).
求下列平面上曲线积分,其中是沿椭圆正向从A(a,0)到(0,b)的一段弧,a≠1.
随机试题
A.发作性眩晕、耳鸣、听力减弱B.伴鼓膜穿孔C.渐进性眩晕、耳鸣、听力减退、口周麻木D.头部处在一定位置时眩晕E.上感后眩晕、恶心、呕吐、无耳鸣及听力减退上述临床表现符合哪种疾病内耳药物中毒
A、CMB、LDLC、VLDLD、HDLE、IDL体内主要运输外源性甘油三酯的是
葡萄球菌肺炎抗生素治疗的疗程是
单室模型多剂量静脉注射给药稳态最大血药浓度公式是()。
商业汇票的承兑期限最长不超过()。
该公司2003年的资产净利率为()。该公司2003年的应收账款周转率为()次。
依据新的《企业所得税法》,下列适用20%比例税率的是( )。
以下是一个教学片断,找出其中所运用的教学原则。教师:讲课之前,同学们请先告诉我,我手里现在拿的是什么?学生:土豆/马铃薯。教师:对,同学们都很熟悉,也很常见,而且也有不少人喜欢吃吧。那么,马铃薯的发源地是在中国吗?学
阅读下列材料并回答问题材料12004年4月26日,中国国务院新闻办发表《中国的就业状况和政策》白皮书。白皮书指出,中国有近13亿人口,是世界上人口最多的国家,解决就业问题任务繁重、艰巨、紧迫。白皮书指出,近年来,在就业压力持续加大的情况下,
ICMPisshortforInternet(71)MessageProtocol,andisanintegralpartoftheInternet(72)suite(commonlyreferredtoas
最新回复
(
0
)