首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
设y1(x),y2(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
admin
2017-08-18
30
问题
设y
1
(x),y
2
(x)为二阶变系数齐次线性方程y’’+p(x)y’+q(x)y=0的两个特解,则C
1
y
1
(x)+C
2
y
2
(x)(C
1
,C
2
为任意常数)是该方程通解的充分条件为
选项
A、y
1
(x)y
2
’(x)一y
2
(x)y
1
’(x)=0.
B、y
1
(x)y
2
’(x)一y
2
(x)y
1
’(x)≠0·
C、y
1
(x)y
2
’(x)+y
2
(x)y
1
’(x)=0.
D、y
1
(x)y
2
’(x)+y
2
(x)y
1
’(x)≠0·
答案
B
解析
根据题目的要求,y
1
(x)与y
2
(x)应该线性无关,即
≠λ(常数).反之,若这个比值为常数,即y
1
(x)=λy
2
(x),那么y
1
’(x)=λy
2
’(x),利用线性代数的知识,就有y
1
(x)y
2
’(x)一y
2
(x)y
1
’(x)=0.所以,(B)成立时,y
1
(x),y
2
(x)一定线性无关,应选(B).
转载请注明原文地址:https://kaotiyun.com/show/BBr4777K
0
考研数学一
相关试题推荐
质量为M,长为l的均匀杆AB吸引着质量为m的质点C,C位于AB的延长线上并与近端距离为a,已求得杆对质点C的引力其中k为引力常数,现将质点C在杆的延长线上从距离近端rn,处移至无穷远时,则引力作的功为__________.
设S为球面:x2+y2+z2=R2,则下列同一组的两个积分均为零的是
有三封不同的信随机投入编号为1,2,3,4的四个信箱中,以X表示有信的最小信箱号码,以Y表示无信的最大信箱号码,求X,Y的联合概率分布.
设f(x)在[0,1]连续,在(0,1)二阶可导且f(0)=/(1)=0,f’’(x)0(x∈(0,1)),
没A是n阶反对称矩阵,证明:如果A是A的特征值,那么一λ也必是A的特征值.
没A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A’是对称矩阵;
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
设f(x),g(x)在[-a,a]上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(Ⅰ)证明(Ⅱ)利用(Ⅰ)的结论计算定积分
∫arcsinxarccosxdx
假设随机变量x在区间[一1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于()
随机试题
对于复杂算法,用自然语言很难描述算法步骤和结构,我们通常使用_________的描述方法。
下列属于政府债券的是
SE序列中,血流表现为低信号的原因为
用治痈肿疔毒、泄泻痢疾、肺痨且具杀虫功效的药物是
《建设工程安全生产管理条例》第11条规定,建设单位应当将拆除工程发包给()的施工单位。
会员制期货交易所中层管理人员的任免要向()报告。
假设在资本市场中平均风险股票报酬率为14%,权益市场风险溢价为4%,某公司普通股β值为1.5。该公司普通股的成本为()。
某同学在构建DNA分子模型时,想用不同的几何图形代表核苷酸的三个不同组成部分,那么该同学组建的DNA分子模型中共有多少种不同的几何图形()。
学生发现生活中的问题,并搜集资料加以分析解决的学习方法是()。
读书时遇到一段读不懂,你或许会慢慢地再读一遍,也或许会寻找其他线索,这属于()
最新回复
(
0
)