首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元齐次线性方程组的一个基础解系为η1,η2,η3,η4,则下列向量组中仍为该齐次线性方程组的基础解系的是( )
设n元齐次线性方程组的一个基础解系为η1,η2,η3,η4,则下列向量组中仍为该齐次线性方程组的基础解系的是( )
admin
2018-01-12
58
问题
设n元齐次线性方程组的一个基础解系为η
1
,η
2
,η
3
,η
4
,则下列向量组中仍为该齐次线性方程组的基础解系的是( )
选项
A、η
1
-η
2
,η
2
-η
3
,η
3
-η
4
,η
4
-η
1
.
B、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
.
C、η
1
,η
1
+η
2
,η
1
+η
2
+η
3
,η
1
+η
2
+η
3
+η
4
.
D、η
1
+η
2
,η
2
+η
3
,η
3
-η
4
,η
4
-η
1
.
答案
C
解析
显然题设中的n元齐次线性方程组的基础解系含4个线性无关的解向量,只需验证各选项中的4个向量是否线性无关,且是否是已知方程组的解.
设 k
1
η
1
+k
2
(η
1
+η
2
)+k
3
(η
1
+η
2
+η
3
)+k
4
(η
1
+η
2
+η
3
+η
4
)=0,
即 (k
1
+k
2
+k
3
+k
4
)η
1
+(k
2
+k
3
+k
4
)η
2
+(k
3
+k
4
)η
3
+k
4
η
4
=0.
由η
1
,η
2
,η
3
,η
4
线性无关知
k
1
=k
2
=k
3
=k
4
=0,
所以C中4个向量线性无关.故C仍为已知齐次线性方程组的基础解系.
转载请注明原文地址:https://kaotiyun.com/show/N0r4777K
0
考研数学一
相关试题推荐
[*]
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设向量组(I)α1,α2,…,αs线性无关,(Ⅱ)β1,β2,…,βt线性无关,且αi(i=1,2,…,s)不能由(Ⅱ)β1,β2,…,βt线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1,β
设证明:级数收敛.
设则其以2π为周期的傅里叶级数在点x=π处收敛于_______.
设向量α=[a1,a2……an]T,β=[b1,b2……bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A,B是n阶矩阵,则下列结论正确的是()
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,xsinxn是比(一1)高阶的无穷小,则正整数n等于()
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)