首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2022-04-07
35
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由|A|/λ
1
=2,|A|/λ
2
=3,|A|/λ
3
=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,1/2,1/3. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/N1R4777K
0
考研数学三
相关试题推荐
已知方程组有解,证明方程组无解.
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(Ⅰ)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设φ(x)=∫0x(x-t)2f(t)dt,求φ’’’(x),其中f(x)为连续函数.
设二维离散型随机变量只取(一1,一1),(一1,0),(1,一1),(1,1)四个值,其相应概率分别为.(I)求(X,Y)的联合概率分布;(Ⅱ)求关于X与关于Y的边缘概率分布;(Ⅲ)求在Y=1条件下关于X的条件分布与在X=1条件下关于Y的条件分布.
已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。从甲箱中任取3件产品放入乙箱后,求:(Ⅰ)乙箱中次品件数的数学期望;(Ⅱ)从乙箱中任取一件产品是次品的概率。
设连续型随机变量X的概率密度f(x)为偶函数,且F(x)=f(t)dt,则对任意常数a>0,P{|X|>a}为().
设函数f(x)具有二阶连续的导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
随机试题
背景资料:××年11月26日20时30分,某城市快速内环工程B17-B18钢箱梁防撞墙施工时,钢箱梁发生侧翻,导致钢箱梁上7名施工人员死亡,另造成桥下3名施工人员受轻伤。事故调查情况:该项目负责人为赶工期、施工方便,擅自变更设计要求的施工程序,在钢箱梁支座
简述为什么说我国在推行公务员制度时一定要坚持马克思主义中国化理论指导?
星海公司准备购买一批产品,初步确定了两家供应商。甲供应商的付款条件为(2/10,n/30),乙供应商的付款条件为(1/20,n/30),其他条件完全相同。要求:如果该公司准备放弃现金折扣,应选择哪家供应商?
A左室舒张期过短B左室排血量急剧下降C左室舒张期负荷突然明显加重D左室充盈障碍E左室后负荷突然明显加重急性广泛心肌梗死引起急性肺水肿的发病机制是
证券经纪商对委托人的首要义务是()
关于股份有限公司责任的说法,正确的有()。
自2017年7月1日起,下列货物中按照11%的税率征收增值税的有()。
甲、乙两公司采用合同书形式订立了一份买卖合同,双方约定由甲公司向乙公司提供100台精密仪器,甲公司于8月31日前交货,并负责将货物运至乙公司,乙公司在收到货物后10日内付清货款。合同订立后双方均未签字盖章。7月28日,甲公司与丙运输公司订立货物运输合同,
本单位的会计档案机构为方便保管会计档案,可以根据需要对其拆封重新整理。()
______theyareverytired,theyfeelhappybecausethey’vefinallyfinishedtheirproject.
最新回复
(
0
)