首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2022-04-07
45
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
-4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
-4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由|A|/λ
1
=2,|A|/λ
2
=3,|A|/λ
3
=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,1/2,1/3. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/N1R4777K
0
考研数学三
相关试题推荐
[*]
[*]
设f(x)=(x>0),则f(x)的不可导点为________。
2
设两条抛物线y=nx2+和y=(n+1)x2+记它们交点的横坐标的绝对值为an.求:(1)这两条抛物线所围成的平面图形的面积Sn;(2)级数的和.
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
已知A是n阶可逆矩阵,证明ATA是对称、正定矩阵.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设x=rcosθ,y=rsinθ,则极坐标系(r,θ)中的累次积分可化为直角坐标系(x,y)中的累次积分().
已知函数f(x)=ax3+x2+2在x=0和x=—1处取得极值.则曲线y=f(x)的拐点是________.
随机试题
______,Iwillmarryhimallthesame.
下列选项中,关于千斤顶的使用要求,正确的有()。
下列土石材料中,不能直接用作路基填料的是()。
急性肾衰竭少尿或无尿期应控制血清钾于正常水平,以预防高钾血症,其相应的措施包括()。
-1/22,-1/33,-1/44,( )
设直线L1:=z/1,则过直线L1且平行于L2的平面方程为_______.
需求分析阶段产生的主要文档是()
Theword"obscure"inline1isclosestinmeaningtoAccordingtothepassage,whichofthefollowingactivitiesischaracter
Ifbookshadneverbeendiscovered,manwouldhavefoundsomeotherwayofrecordinghiscommunication.Butthen,forourconsid
Thepresentparticiple(现在分词)in"We’rehavingarippinggoodtime"isusedtomodify
最新回复
(
0
)