首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得 pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得 pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
admin
2022-09-05
36
问题
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得
pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
选项
答案
证法一: 令F(x)=(p+q)f(x)-pf(c)-qf(d),可知F(x)在[c.d]上连续,注意到 F(c)=(p+ q) f(c)-pf(c)-qf(d)=q[f(c)- f(d)]. F(d)=(p+q)f(d)-pf(c)-qf(d)= p[f(d)- f(c)], 故当f(c)-f(d)=0时,可知c,d均可取作ε; 而当f(c)-f(d)≠0时,又p>0,q>0,于是有 F(c)F(d)=-pq[f(c)-f(d)]
2
>0 由零点定理可知,至少存在一点ε∈(c,d)[*](a,d),使得F(ε)=0,即 pf(c)+qf(d)=(p+q)f(ε). 证法二: 因为 f(x)在[a,b]上连续,故f(x)在[a,b]上有最大值M与最小值m,且有 m≤f(x)≤M 由于c,d∈[a,b],也有 pm≤pf(c)≤pM,qm≤qf(d)≤qM, 两式相加得 (p+q)m≤pf(c)+qf(d)≤(p+q)M 即[*] 由介值定理知,在[a,b]内至少存在一个点ε使得 [*] 即pf(c)+qf(d)=(p+q)f(ε).
解析
转载请注明原文地址:https://kaotiyun.com/show/N5R4777K
0
考研数学三
相关试题推荐
设,则y’’=_______.
计算(ai=0,i=1,2…,n).
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得f(x,y)g(x,y)dσ=f(ξ,η)g(x,y)dσ.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b·
设f(x)∈C[a,b],在(a,b)内二阶可导,且f”(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且φ(x)dx=1.证明:f(x)φ(x)dx≥f[xφ(x)dx].
设X1,X2,…,XN是来自总体X的简单随机样本,已知E(XK)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设矩阵A=,β=,Ax=β有解但不唯一。求a的值;
当x→0时,用“o(x)”表示比x高阶的无穷小,则下列式子中错误的是
求函数的定义域:
设矩阵A=(α1,α2,α3,α4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
随机试题
寒热并用、补消兼施、辛开苦降的方剂是
《季氏将伐颛臾》体现出孔子关于治国以礼、________的政治主张。
不属于动脉粥样硬化复合性病变的是
无偿献血者保留措施是
关于细胞因子作用特点的叙述,错误的是
从通货膨胀的程度来看,物价上涨幅度最小的是()通货膨胀。
某企业对营销部门的人力资源需求进行预测,由营销部经理和营销总监根据工作中的经验和对企业未来业务量增减情况来预测营销人员的需求数量。该企业采用的人力资源需求预测方法是()。
下列关于单项资产投资风险度量的表达中,正确的有()。
哲学家康德曾说鸽子飞翔的时候。唯一的阻力来自于空气。但事实证明阻碍鸽子飞行的唯一因素也正是保证鸽子飞行的唯一条件。你是怎样认识“阻碍飞行的唯一因素也正是保证飞行的唯一条件”这一论断的?
A—InternationalMarketPriceB—LandingChargesC—ApplicationNumberD—CurrentPriceE—FavorableBa
最新回复
(
0
)