首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得 pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得 pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
admin
2022-09-05
35
问题
设f(x)在[a,b]上连续,且a<c<d<b,证明:在[a,b]内至少存在一点ε,使得
pf(c)+qf(d)=(p+q)f(ε),其中p,q为任意正常数。
选项
答案
证法一: 令F(x)=(p+q)f(x)-pf(c)-qf(d),可知F(x)在[c.d]上连续,注意到 F(c)=(p+ q) f(c)-pf(c)-qf(d)=q[f(c)- f(d)]. F(d)=(p+q)f(d)-pf(c)-qf(d)= p[f(d)- f(c)], 故当f(c)-f(d)=0时,可知c,d均可取作ε; 而当f(c)-f(d)≠0时,又p>0,q>0,于是有 F(c)F(d)=-pq[f(c)-f(d)]
2
>0 由零点定理可知,至少存在一点ε∈(c,d)[*](a,d),使得F(ε)=0,即 pf(c)+qf(d)=(p+q)f(ε). 证法二: 因为 f(x)在[a,b]上连续,故f(x)在[a,b]上有最大值M与最小值m,且有 m≤f(x)≤M 由于c,d∈[a,b],也有 pm≤pf(c)≤pM,qm≤qf(d)≤qM, 两式相加得 (p+q)m≤pf(c)+qf(d)≤(p+q)M 即[*] 由介值定理知,在[a,b]内至少存在一个点ε使得 [*] 即pf(c)+qf(d)=(p+q)f(ε).
解析
转载请注明原文地址:https://kaotiyun.com/show/N5R4777K
0
考研数学三
相关试题推荐
设,则y(n)=______.
细菌的增长率与总数成正比.如果培养的细菌总数在24小时内由100增长到400,求前12小时后的细菌总数.
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,|f(x)dx=0.证明:存在C∈(a,b),使得f(c)=0;
设u=f(x,y,xyz),函数z=z(x,y)由exyz=(xy+z-t)dt确定,其中f连续可偏导,h连续,求x-y.
设随机变量x的密度函数为f(x)=则P{|X-E(X)|<2D(X)}=____________.
把当x→0+时的无穷小量α=tanx-x,β=排列起来,使排在后面的是前一个的高阶无穷小,则正确的排列次序是
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
随机试题
规划环境影响评价在以下情况下要进行公众参与的是()。
证券公司介绍其控股股东、实际控制人等开户的,证券公司应当将其期货账户信息报()备案,并按照规定履行信息披露义务。
我国个人贷款业务的发展经历了()阶段。
帮助服刑人员构建支持性社会网络服务属于()。
【2015河南新乡】()指注意指向于一定事物时持有的聚精会神的程度。
疑人窃履昔楚人有宿于其友之家者,其仆窃友人之履以归,楚人不知也。适使其仆市履于肆,仆私其直而以窃履进,楚人不知也。他日,友人来过,见其履在楚人之足,大骇曰:“吾固疑之,果然窃吾履。”遂与之绝。逾年而事暴,友人踵①楚人之门,而悔谢曰:“吾不能知子,
关于无线局域网的描述中,正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,将所有学生的“班级编号”、“学号”、“课程名
TheMarylandScienceCenterisMorethanfun.Youcanenjoythethreefloorsofexcitingthings,Watchthelarger-than-lifeplayo
Aliarcannotmakehimself______.
最新回复
(
0
)