首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
admin
2019-05-15
42
问题
设有任意两个n维向量组α
1
,…,α
m
和β
1
,…,β
m
,若存在两组不全为零的λ
1
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则( )
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.
答案
D
解析
本题考查对向量组线性相关、线性无关概念的理解.若向量组γ
1
,γ
2
,…,γ
s
线性无关,即若x
1
γ
1
+x
2
γ
2
+…+x
s
γ
s
=0,必有x
1
=0,x
2
=0,…,x
s
=0.
λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,由此推不出某向量组线性无关,故应排除B、C.
一般情况下,对于
k
1
α
1
+k
2
α
2
+…+k
s
α
s
+l
1
β
1
+…+l
s
β
s
=0,
不能保证必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0及l
1
β
1
+…+l
s
β
s
=0,故A不正确.由已知条件,有
λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+
k
1
(α
1
-β
1
)+…+k
m
(α
m
-β
m
)=0,
又λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,故α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.故选D.
转载请注明原文地址:https://kaotiyun.com/show/NBc4777K
0
考研数学一
相关试题推荐
已知,则u=2a一3b的模|u|=_________.
已知矩阵A=的特征值之和为3,特征值之积为一24,则b=__________.
曲线与直线x=0,x=及x轴围成的图形绕x轴旋转一周所得旋转曲面的侧面积为_______.
设(X,Y)~N(μ,μ;σ2,σ2;0),则P{X
设A是3阶矩阵,ξ1,ξ2,ξ3是三个线性无关的3维列向量,满足Aξi=ξi,i=1,2,3,则A=_______
设随机变量X服从参数为1的指数分布,令Y=max{X,1),求EY.
设f(x)在闭区间[0,1]上连续,证明在开区间(0,1)内存在两个不同的ξ1与ξ2使f(ξ1)=0,f(ξ1)=0.
设总体X的概率密度f(x)=(一∞<x<+∞),其中μ为未知参数.若总体X有以下样本值:1000,1100,1200,求μ的最大似然估计值;
设当|x|<1时f(x)=展开成收敛于它自身的幂级数f(x)=,则关于它的系数an(n=0,1,2,…)成立的关系式为
设n为正整数,F(x)=证明幂级数,在x=一1处条件收敛,并求该幂级数的收敛域.
随机试题
财务结果是由计算得出的______指标,而非财务指标是______指标。
决定感染后果的因素有()
A.痰气郁结,气机不畅B.气滞血瘀,痰凝正虚C.气郁痰火,阴阳失调D.气机逆乱,阴阳失调厥证的主要病机是
患者,男,59岁,身高170cm,体重85kg,患高血压病10余年,未规律服用降压药,血压波动在(160~140)/(100~90)mmHg,未予重视,每于头晕、头痛明显时服药,症状消失后停药,吸烟40年,每日20支,饮酒20年,每日2两,近日由于工作劳累
A.仰卧位,垫肩头过伸B.侧卧位C.仰卧位,双肩尽量下拉D.仰卧位,下颏尽量内收E.俯卧位,垫头尽量使脊柱伸直声门下区癌治疗时常用治疗体位是
产程最大加速期是指临产
既能消食化积,又能散瘀的药物是
依据《中华人民共和国保险法》的规定,合同约定分期支付保险费的,投保人应当于合同成立时支付首期保险费,并应当按期支付其余各期的保险费。投保人支付首期保险费后,除合同另有约定外,投保人超过规定的期限()日未支付当期保险费的,合同效力中止,或者由保
资本市场线没有给出任意证券或组合的收益风险关系。()
一棵二叉树共有25个结点,其中5个是叶子结点,则度为1的结点数为( )。
最新回复
(
0
)