首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
admin
2019-05-15
29
问题
设有任意两个n维向量组α
1
,…,α
m
和β
1
,…,β
m
,若存在两组不全为零的λ
1
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则( )
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.
答案
D
解析
本题考查对向量组线性相关、线性无关概念的理解.若向量组γ
1
,γ
2
,…,γ
s
线性无关,即若x
1
γ
1
+x
2
γ
2
+…+x
s
γ
s
=0,必有x
1
=0,x
2
=0,…,x
s
=0.
λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,由此推不出某向量组线性无关,故应排除B、C.
一般情况下,对于
k
1
α
1
+k
2
α
2
+…+k
s
α
s
+l
1
β
1
+…+l
s
β
s
=0,
不能保证必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0及l
1
β
1
+…+l
s
β
s
=0,故A不正确.由已知条件,有
λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+
k
1
(α
1
-β
1
)+…+k
m
(α
m
-β
m
)=0,
又λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,故α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.故选D.
转载请注明原文地址:https://kaotiyun.com/show/NBc4777K
0
考研数学一
相关试题推荐
已知,则u=2a一3b的模|u|=_________.
设二维随机变量(X,Y)的概率密度为f(x,y)=,则对x>0,fY|X(y|x)=______
设a,b,c的模|a|=|b|=|c|=2,且满足a+b+c=0,则a.b+b.c+c.a=_________.
已知A=,则An=________。
设总体X与Y独立且都服从正态分布N(0,σ2),已知X1,…,Xm与Y1,…,Yn是分别来自总体X与Y的简单随机样本,统计量T=服从t(n)分布,则m/n=_______.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=e4πt2+,则f(t)_________.
设f(x)=πx+x2,一π≤x<π,且周期为T=2π.当f(x)在[一π,π)上的傅里叶级数为则b3=__________.
设函数f(x)=则f’(x)=__________。
设某种电子器件的寿命(以小时计)T服从参数为λ的指数分布,其中λ>0未知.从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预订时间T0结束,此时有k(0<k<n)只器件失效.求一只器件在时间T0未失效的概率;
设幂级数在它的收敛区间内是微分方程的一个解由(Ⅰ)的结果求该幂级数的收敛半径、收敛区间及收敛域.
随机试题
党和政府第一次向全国人民提出实现“四个现代化”奋斗目标是在()
肺胀病变后期病及于
属于正治法的是()。
典型的优秀设备供应商应具备( )等特点。
会计职业道德的基本原则是会计职业道德规范体系的中心和主干。()
体现人员更新的制度有()。
有一些水管,它们每分钟注水量都相等。现在打开其中若干根水管,经过预定时间的1/3,再把打开的水管增加1倍,就能按预定时间注满水池。如果开始打开10根水管,中途不增加水管,也能按预定时间注满水池。则开始打开了几根水管?
1953年至1978年的25年间,我国最大的建设成就是()
「君、アメリカに 四年も 留学していたんだよ。」 「あ、そう。どおりで 英語が 上手な よ。」
A、Heisworkinginawebhostingcompanynow.B、Hehasmanyleadersinhiscompany.C、Heisstilllookingforajobnow.D、Hewa
最新回复
(
0
)