首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的λ1,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则( )
admin
2019-05-15
49
问题
设有任意两个n维向量组α
1
,…,α
m
和β
1
,…,β
m
,若存在两组不全为零的λ
1
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则( )
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.
答案
D
解析
本题考查对向量组线性相关、线性无关概念的理解.若向量组γ
1
,γ
2
,…,γ
s
线性无关,即若x
1
γ
1
+x
2
γ
2
+…+x
s
γ
s
=0,必有x
1
=0,x
2
=0,…,x
s
=0.
λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,由此推不出某向量组线性无关,故应排除B、C.
一般情况下,对于
k
1
α
1
+k
2
α
2
+…+k
s
α
s
+l
1
β
1
+…+l
s
β
s
=0,
不能保证必有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0及l
1
β
1
+…+l
s
β
s
=0,故A不正确.由已知条件,有
λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+
k
1
(α
1
-β
1
)+…+k
m
(α
m
-β
m
)=0,
又λ
1
,…,λ
m
与k
1
,…,k
m
不全为零,故α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.故选D.
转载请注明原文地址:https://kaotiyun.com/show/NBc4777K
0
考研数学一
相关试题推荐
设f(x)在区间[一π,π]上连续且满足f(x+π)=一f(x),则f(x)的傅里叶系数a2n=_________.
设随机变量X的分布律为X~,则Y=X2+2的分布律为___________.
二元函数f(x,y)=x2(2+y2)+ylny的极值__________.
若向量x与向量a=2i—j+2k共线,且满足方程a.x=一8,则向量x=_______.
由方程xyz+确定的隐函数z=z(x,y)在点(1,0,一1)处的全微分为dz=___________。
已知α1,α2及β1,β2均是3维线性无关向量组.证明存在3维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
设f(x)=cos2015x,是f(x)的以2π为周期的傅里叶级数,则a100________.
设Z~N(0,1),令X=μ+σZ,X1,X2,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=依概率收敛于
设曲线y=y(x)在点与直线4x-4y-3=0相切,且y=y(x)满足方程则该曲线在相应x∈[一1,1]上(x,y)点的曲率为______.
袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.
随机试题
导游是指按照()的规定,取得导游证,接受旅行社委派,或同游客签订合同,为游客提供指导讲解及相关旅游服务的人员。
传播的一般性功能有哪两个层次?
正虚邪实而不耐攻伐的病人,应采用:()
下列有关“证”的说法,不正确的是()。
以下关于工资制度内容的表述,正确的有:()
重复性条件包括()。
权益法下,下列各项不会引起长期股权投资账面价值变动的有()。
汉朝官吏诈称皇帝诏命的,后果可分为()
Parentsnowhaveapopularbeliefthatschoolsarenolongerinterestedinspelling.NoschoolIhavetaughtinhaseverignored
情景:你放学后发现家里没有人,你没有钥匙,也不想在家门口等。任务:请用英语给爸爸、妈妈写一张50字左右的便务,告诉他们:①你何时回来的;②你现在要去哪里,去干什么;③父母如何找你。格式DearMomandDad:
最新回复
(
0
)