首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
admin
2016-06-27
75
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
.证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] (2)令 F(x)=xf(x)一∫
x
1
f(t)dt, [*] F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/NFT4777K
0
考研数学三
相关试题推荐
在资本主义工商业改造中,企业的利润分配实行“四马分肥”的办法,除了国家所得税外,还包括()。
在中国共产党七届二中全会上,毛泽东告诫全党:“务必使同志们继续地保持谦虚、谨慎、不骄、不躁的作风,务必使同志们继续地保持艰苦奋斗的作风。”其原因主要是()。
材料1 习近平总书记指出,中医药学是中国古代科学的瑰宝,也是打开中华文明宝库的钥匙。正视中医药这一祖先留给我们的宝贵财富,把它继承好、发展好、利用好,是建设健康中国的题中之义,也是对优秀文明的重要担当。 材料2 “中医药全面介入、深度参与新冠肺
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
证明下列关系式:A∪B=A∪(B-A)=(A-B)∪(B-A)∪(A∩B).
画出积分区域,并计算下列二重积分:
设函数f(x),g(x)在[a,b]上连续,g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是p1=18-2Q1,p2=12-Q2,其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨
随机试题
从资源管理的角度看,操作系统的主要功能包括处理器管理、存储管理、设备管理、联网与通信管理以及()。
猩红热样皮疹多见于频咳,喘憋重多见于
对于急性胰腺炎患者,以下哪项是护士
控制阀校准和试验要求包括()。
为了分清会计事项处理的先后顺序,便于记账凭证与会计账簿之间的核对,确保记账凭证的完好无缺,填制记账凭证时,应当( )。
宁夏旅游资源中的“两山一河”指的是()。
实施培训是指在企业培训组织管理部门或岗位人员的组织下,由培训教师实施培训,其主要内容不包括()。
下列作品中属于编年体历史著作的是()。
一个人的拥有,不是取决于机遇,而是取决于人的眼光。眼光______的人,只看到一时,而看不到一世;眼光______的人,只看到好的一面,而看不到坏的一面;只有那些眼光长远、______的人,才能拥有很多很多。填入横线部分最恰当的一项是()。
WhatistheMangoingtobuy?
最新回复
(
0
)