首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且f’(x)>.证
admin
2016-06-27
81
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且f’(x)>
.证明(1)中的x
0
是唯一的.
选项
答案
(1)本题可转化为证明x
0
f(x
0
)=[*]令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ’(x
0
)=0,即 [*] (2)令 F(x)=xf(x)一∫
x
1
f(t)dt, [*] F’(x)=xf’(x)+f(x)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内是严格单调递增的,从而F(x)=0的点x=x
0
一定唯一,因此(1)中的点是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/NFT4777K
0
考研数学三
相关试题推荐
受疫情影响,当前经济发展面临的挑战前所未有,必须充分估汁困难、风险和不确定性,切实增强紧迫感,抓实经济社会发展各项工作?为此要()。
毛泽东首次提出社会主义社会基本矛盾的概念,并对社会主义社会的基本矛盾作了科学分析。毛泽东提出社会主义的基本矛盾是()。
经济社会的发展,使公共生活的场所和领域不断扩展、空间不断扩大,特别是网络使人们的公共生活进一步扩展到虚拟世界。这体现的公共生活的一个主要特点是()。
具体劳动和抽象劳动的关系是()。
马克思有一句名言:“批判的武器当然不能代替武器的批判,物质力量只能用物质力量来摧毁;但是理论一经群众掌握,也会变成物质力量。”马克思主义主要由哲学、政治经济学、科学社会主义三大组成部分构成。这三大组成部分分别来源于德国古典哲学、英国古典政治经济学、法国空想
2020年3月26日,美国所谓“2019年台北法案”被签署成法。美方这一行动严重违反一个中国原则和中美三个联合公报规定,严重违背国际法和国际关系基本准则,粗暴干涉中国内政。中方对此表示强烈不满和坚决反对。这表明(社)。
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
利用定积分的几何意义求出下列积分:
利用高斯公式计算第二类曲面积分:
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
随机试题
简述幼儿园课程目标的作用。
设二叉树中有20个叶子节点,5个度为1的节点,则该二叉树中总的节点数为()。
阳水辨证属湿热壅盛,其选方是
患者,男,72岁,胃癌晚期,给予脂肪乳、氨基酸等输入。1周后注射部位沿静脉走向出现条索状红线,局部组织肿胀、发红,患者诉有疼痛感。为该患者输注脂肪乳和氨基酸的目的是
以下除哪项外是抽搐的中医病机
胃溶性的薄膜衣材料是
()是债务人向债权人出具的、在一定时期支付利息和到期归还本金的债权债务凭证。
决定工作岗位存在的前提是()。
“守株待兔”的故事中农夫的错误从哲学上讲是()。
WhenRobertoFelizcametotheUSAfromtheDominicanRepublic,heknewonlyafewwordsofEnglish.Educationsoonbecameanig
最新回复
(
0
)