首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量组α1,α2,…,αn线性无关,令 试证β1,β2,…,βn线性无关的充分必要条件为
设n维向量组α1,α2,…,αn线性无关,令 试证β1,β2,…,βn线性无关的充分必要条件为
admin
2020-09-25
71
问题
设n维向量组α
1
,α
2
,…,α
n
线性无关,令
试证β
1
,β
2
,…,β
n
线性无关的充分必要条件为
选项
答案
设有关系式k
1
β
1
+k
2
β
2
+…+k
n
β
n
=0.从而有 k
1
(a
11
α
1
+a
12
α
2
+…+a
1n
α
n
)+k
2
(a
21
α
1
+a
22
α
2
+…+a
2n
α
n
)+…+k
n
(a
n1
α
1
+a
n2
α
2
+…+a
nn
α
n
)=0. 整理可得:(k
1
a
11
+k
2
a
21
+…+k
n
a
n1
)α
1
+(k
1
a
12
+k
2
a
22
+…+k
n
a
n2
)α
2
+…+(k
1
a
1n
+k
2
a
2n
+…+k
n
a
nn
)α
n
=0. 由于α
1
,α
2
,…,α
n
线性无关,所以有[*] 而k
1
,k
2
,…,k
n
全为零的充分必要条件是方程组的系数行列式 [*] 所以β
1
,β
2
,…,β
n
线性无关的充分必要条件为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/NJx4777K
0
考研数学三
相关试题推荐
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
设连续型随机变量X的概率密度为f(x)=F(X)为X的分布函数,E(X)为X的数学期望,则P{F(X)>E(X)—1}=________.
设随机变量X的概率密度为令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求(Ⅰ)Y的概率密度FY(y);(Ⅱ)Cov(X,Y);(Ⅲ)F(-,4).
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
(02年)求极限
(2002年)设D1是由抛物线y=2x2和x=a,x=2及y=0所围成的平面区域;D2是由抛物线y=2x2和直线y=0,x=a所围成的平面区域,其中0<a<2。(I)试求D1绕x轴旋转而成的旋转体体积V1;D2绕y轴旋转而成的旋转体积V2;
(2016年)设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,T=max{X1,X2,X3}。(Ⅰ)求T的概率密度;(Ⅱ)确定a,使得E(aT)=θ。
[2014年]下列曲线有渐近线的是().
随机试题
有宣肺解表,祛痰平喘之功的方剂是
局部兴奋
下列不是肉毒梭菌特点的是
1:2.5万、1:5万、1:10万地形图上等高线对于附近野外控制点的高程中误差(m)分别不大于()。
某现浇钢筋混凝土楼盖,主梁跨度为8.4m,次梁跨度为4.5m,次梁轴线间距为4.2m,下列施工缝留置方式正确的有()。
在操作风险经济资本计量的方法中,()的原理是,将商业银行的所有业务划分为八类产品线,对每一类产品线规定不同的操作风险资本要求系数,并分别求出对应的资本,然后加总八类产品线的资本,即可得到商业银行总体操作风险的资本要求。
最早在大学里讲授教育学的学者是()。
智力发展的个体差异表现在()
YouaresupposedtowritefortheStudents’UnionanoticetowelcomestudentstotakepartinanEnglishSpeechContest.Yoush
Hehadbeen______togiveupmuchofhistimetohousework.
最新回复
(
0
)