首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为( )
admin
2019-03-23
46
问题
设α
1
,α
2
,α
3
,α
4
是4维非零列向量组,A=(α
1
,α
2
,α
3
,α
4
),A
*
是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0的基础解系为( )
选项
A、α
1
,α
2
,α
3
。
B、α
1
+α
2
,α
2
+α
3
,3α
3
。
C、α
2
,α
3
,α
4
。
D、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
1
。
答案
C
解析
由Ax=0的基础解系仅含1个解向量,知|A|=0且R(A)=4—1=3,所以R(A
*
)=1,那么A
*
x=0的基础解系应含3个解向量,故排除D。
又由题设有(α
1
,α
2
,α
3
,α
4
)(1,0,2,0)
T
=0,即α
1
+2α
3
=0,亦即α
1
,α
3
线性相关,所以排除A、B,故选C。
转载请注明原文地址:https://kaotiyun.com/show/NXV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
证明:与基础解系等价的线性无关的向量组也是基础解系.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
随机试题
治疗上呼吸道感染的措施,下列哪项不妥
既能用于麻醉,又能用于治疗心律失常的药物是
异位妊娠的临床表现不包括
患者,男,29岁。1年来排尿次数增多,伴尿急、尿痛。夜间有低热、盗汗,实验室检查:酸性尿,镜下见大量红细胞及白细胞,尿液结核分枝杆菌培养阳性,该致病菌是
下面关于骨骺的说法正确的是
下列关于法人机关的表述哪些是正确的?()
[2012年第117题]下列有关太阳能集热器设置在墙面上时的要求,错误的是:
基金利润的来源有()。I.利息收入Ⅱ.投资收益Ⅲ.其他收入Ⅳ.公允价值变动损益
下列程序的运行结果是【】。x=“计算机等级考试”Y=""L=LEN(X)DOWHILEL>=1Y=Y+SUBSTR(X,L-1,2)L=L-2ENDDO?Y
ANiceCupofTeaTheLegendaryOriginsofTeaA)ThestoryofteabeganinancientChinaover5,000yearsago.Accordingto
最新回复
(
0
)