首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
admin
2019-06-28
59
问题
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+B
T
A正定.
选项
答案
必要性 取B=A
一1
,则AB+B
T
A=E+(A
一1
)
T
A=2E,所以AB+B
T
A是正定矩阵. 充分性 用反证法.若A不是可逆矩阵,则r(A)<N,于是存在实向量X≠0使得Ax。=0.因为A是实对称矩阵,B是实矩阵,于是有 x
0
(AB+B
T
A)x
0
=(Ax
0
)
T
Bx
0
+x
0
T
B
T
(Ax
0
)=0, 这与AB+B
T
A是正定矩阵矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/NdV4777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ1线性无关。
已知向量组的秩为2,则t=_________。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
设具有二阶连续导数,则=_____________.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。设β=α1+α2+α3,求方程组Ax=β的通解。
设矩阵,且方程组Ax=β无解。求方程组ATAx=ATβ的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
随机试题
关于卵巢成熟畸胎瘤的描述,不正确的是
胎盘早期剥离的诊断主要是依靠下列哪项
队列研究中,确定样本含量时,与下列哪项无关
某护士用下排气式高压蒸气灭菌锅进行灭菌,8:35am锅内压力达到所需数值,其后一直维持在103~137kPa之间,结束灭菌的正确时间是()。
管网灭火系统应设()启动方式。
在学习成败归因影响学习动机的诸因素中,激励作用最大的是()。
钢琴组曲《镜》是_________创作的。
邓小平同志科学世界观最鲜明的特征是
文涵是大地公司的销售部助理,负责对全公司的销售情况进行统计分析,并将结果提交给销售部经理。年底,她根据各门店提交的销售报表进行统计分析。打开“计算机设备全年销量统计表.xlsx”,帮助文涵完成以下操作:将工作表平均单价中的区域B3:C7定义名称为“商
Whatisthemainpurposeoftheannouncement?
最新回复
(
0
)