首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-04-12
80
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
。若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
令x=[*],则Ax=(α
1
,α
2
,α
3
,α
4
)[*]=β。 且得x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
, 将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α
3
+(x
4
—1)α
4
=0。 因α
2
,α
3
,α
4
线性无关,知[*] 解此方程组得x=[*],其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/1xk4777K
0
考研数学二
相关试题推荐
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.求a,b的值.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
随机试题
阅读《谏逐客书》中的一段,回答文后问题。臣闻地广者粟多,国大者人众,兵强则士勇。是以泰山不让土壤,故能成其大;河海不择细流,故能就其深;王者不却众庶,故能明其德。是以地无四方,民无异国,四时充美,鬼神降服,此五帝三王之所以无敌也。今乃弃黔首以资敌
溃疡性结肠炎的病理变化包括
如果企业已经确认收入,又发生销售退回的,均应冲减退回当月的销售收入,同时冲减退回当月的销售成本。 ( )
装载出境动物的运输工具,装载前应当在口岸检验检疫机构监督下进行( )。
(2008年考试真题)基金业绩评估的成功概率法是根据对市场走势的预测而正确改变()的百分比来对基金择时能力所进行的一种衡量方法。
最容易产生对企业的控制权问题的融资方式是()
冗余设计是指在人力资源聘任、使用、解聘、辞退、晋升等过程中要留有充分的余地,使人力资源整体运行过程具有一定的弹性,当某一决策发生偏差时,留有纠偏和重新决策的余地。根据上述定义,以下不属于冗余定义的是:
阅读以下说明,回答问题1~问题2,将解答填入对应的解答栏内。[说明]WWW服务是目前Internet上应用最广的应用,它基于客户机朋艮务器模式的应用系统,WWW服务器负责对各种信息进行组织,WWW客户机负责如何显示信息和向服务器发送请求
吉他
(1)Youdonotneedtoplayinabandtobepartoftheburgeoning"gigeconomy".Nearlyeveryonehasskillsorassetstheyc
最新回复
(
0
)