首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
admin
2021-02-25
78
问题
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
选项
答案
设F(x)=f(x)-x,则F(x)在[0,1]上连续. 由于0<f(x)<1,所以 F(0)=f(0)>0,F(1)=f(1)-1<0, 由介值定理知,在(0,1)内至少存在一点ξ,使F(ξ)=0,即f(ξ)=ξ. 假设有两个x
1
,x
2
∈(0,1),且x
1
≠x
2
,使F(x
1
)=F(x
2
)=0,则由罗尔定理,存在η∈(0,1),使f’(η)=f’(η)-1=0,这与f’(x)≠1矛盾,故f(x)=x有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ni84777K
0
考研数学二
相关试题推荐
求常数m,n,使得
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
下列矩阵中两两相似的是
设三角形三边的长分别为a、b、c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
求不定积分
曲线y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕X轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。计算极限S(t)/F(t)
设f(x)为连续函数,a与m是常数且a>0,将二次积分I=∫0ady∫0yem(a一x)f(x)dx化为定积分,则I=____________.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算χdχdy.
随机试题
除()保密的外,行政法规和规章草案要向社会公开征求意见,并以适当方式反馈意见采纳情况。
从经济性考虑,只要满足使用要求就应选用________。
曲线y=x+ex在点(0,1)处的切线斜率k=________.
遵循合法原则,具体包括合法()。
一般适用于某种风险可能造成相当大的损失,且发生的频率较高或应用其他风险对策防范风险代价昂贵,得不偿失的风险对策是()。
位于市区的某中学2017年1月利用学校空地建造写字楼,发生的相关业务如下:(1)按照国家有关规定补交土地出让金2000万元,缴纳相关费用81万元。(2)写字楼开发成本3600万元。(3)写字楼开发费用中的利息支出为500万元(能够提供金融机构证明并按
案例一般资料:求助者,男性,61岁,退休教师。案例介绍:求助者的一位老朋友半月前因心脏病救治无效去世,求助者得知消息后当晚即感胸闷、心慌,出现入睡困难并容易惊醒的现象。经一周的住院检查,并未发现患心脏病的迹象。但求助者还是怀疑自己得了冠
下面为高中物理教材力的合成一节中“探究合力的方法”的实验装置。在这个探究实验中,设计一个教学方案让学生更好地理解力的平行四边形法则。
下列按照时间顺序出现最晚的是:
A、Negative.B、Positive.C、Ambiguous.D、Neutral.B本题要求推断McKay教授对于子女与父母分开居住的看法。McKay教授的原话是Ithinkthatit’sanexcellentarrangeme
最新回复
(
0
)