首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q,使得QTAQ是对角矩阵
构造正交矩阵Q,使得QTAQ是对角矩阵
admin
2019-07-22
60
问题
构造正交矩阵Q,使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 |λE-A|=[*]=λ(λ-2)(λ-6). A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, [*] 求得一个非零解为(1,1,-1)
T
,单位化得 γ
1
=[*](1,1,-1)
T
. 属于2的特征向量是齐次方程组(A-2E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,-1,0)
T
,单位化得 γ
2
=[*](1,-1,0)
T
. 属于6的特征向量是齐次方程组(A-6E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,2)
T
,单位化得 γ
3
=[*](1,1,2)
T
. 作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
-1
AQ=[*] (2)先求特征值 |λE-A|=[*]=(λ-1)
2
(λ-10). A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A-E)X=0的非零解, [*] 得(A-E)X=0的同解方程组x
1
+2x
2
-2x
3
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,-1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,-1,1)
T
. 令γ
1
=α
1
/‖α
1
‖=[*](0,1,1)
T
,γ
2
是=α
2
/‖α
2
‖=[*](4,-1,1)
T
. 再求出属于10的特征向量是齐次方程组(A-10E)X=0的非零解(1,2,-2)
T
,令 γ
3
=α
3
/‖α
3
‖=(1,2,-2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则 Q
T
AQ=Q
-1
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/VFN4777K
0
考研数学二
相关试题推荐
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中f是可微函数,计算并化成最简形式.
设向量组α1,α2,…,αs为齐次线性方程组AX一0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
求如dy,其中D是由L:(0≤t≤2π)与χ轴围成的区域.
证明:对任意的χ,y∈R且χ≠y,有
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得f′(ξ)=f′(η)
设A,B为n阶对称矩阵,下列结论不正确的是().
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(Ⅰ)的解。以上命题中正确的是()
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设A=E-ααT,其中α为n维非零列向量.证明:(1)A2=A的充分必要条件是α为单位向量;(2)当α是单位向量时A为不可逆矩阵.
随机试题
我国是抗生素应用及滥用形势较严峻的国家。国家卫生主管部门多次开展专项整治行动,并出台多款规范用药指南与准则。下列情形中,属于抗菌药物联合应用的适应证范畴的是()。
A.百会B.大椎C.哑门D.至阳E.上星善于治疗暴喑、舌强不语的腧穴是
交通运输行业的公路水运工程试验检测活动的监督管理者是()。
建设工程施工合同履行过程中,不应由发包人完成的工作是( )。
常用的授权形式中,()信贷授权可授予总部授信业务审批部门及其派出机构、分支机构负责人或独立授信审批人等。
某企业为一般纳税企业,增值税率为17%,2014年发生经济业务如下:(1)企业4月1日从银行贷款200000元,2个月期,年利率6%,月末计提利息费用,到期还本付息。(2)企业4月1日,为购材料委托银行承兑商业汇票,以银行存款支付承兑手续费1000
甲、乙、丙、丁四人参加一项体育比赛,有人问他们,谁的成绩最好。甲说“不是我”.乙说“是丁”,丙说“是乙”,丁说“不是我”。如果四人的回答只有一人符合实际,且四人成绩没有并列情形,那么谁的成绩最好?
What’sthepurposeoftheannouncement?
Clearlyifwearetoparticipateinthesocietyinwhichwelivewemustcommunicatewiththeotherpeople.Agreatdealof
Onnoaccount______everleavethebabyathomealone.
最新回复
(
0
)