首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是正定矩阵,证明|A+E|>1.
已知A是正定矩阵,证明|A+E|>1.
admin
2018-06-27
28
问题
已知A是正定矩阵,证明|A+E|>1.
选项
答案
此题用特征值较简单. 设A的特征值为λ
1
,λ
2
,…,λ
n
,则A+E的特征值为λ
1
+1,λ
2
+1,…,λ
n
+1. 因为A正定,所以λ
i
>0,λ
i
+1>1(i=1,2,…,n).于是 |A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://kaotiyun.com/show/O4k4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
设函数f(x)在[0,+∞)内可导,且f(1)=2.若f(x)的反函数g(x)满足求f(x).
设f(x)在x=0处存在2阶导数,且f(0)=0,f’(0)=0,f’’(0)≠0.则()
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aii=∑λi,所以a+a+a=6+0+0→a=2.
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
(2008年)设A=,则在实数域上与A合同的矩阵为【】
(2014年)设函数f(χ)=,χ∈[0,1].定义函数列:f1(χ)=f(χ),f2(χ)=f(f1(χ)),…,fn(χ)=f(fn-1(χ)),…记Sn是由曲线y=fn(χ),直线χ=1及χ轴所围成平面图形的面积,求极限nSn.
随机试题
福莱特认为,达到整合的过程实际上是一个()
管理费用
DSA检查常用的药物准备不包括
儿科成为独立分科开始于
犀角散的适应证是乌头汤治疗以上哪一种情况较合适
下列指标中的结构相对指标是()。
利润表中的营业成本应该根据主营业务成本的当期发生额确认。()
下列现象中,不能说明大气压存在的是()
根据下列材料回答问题。2010年,京津冀经济圈的哪一经济指标值居三大经济圈之首?()
Bymeansofdreams,thehumansubconsciousissendingimportantmessagestotheconsciousmind.Aluciddreamislikeadaydrea
最新回复
(
0
)