设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.

admin2019-05-19  44

问题 设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e一4x+x2+3x+2,则Q(x)=________,该微分方程的通解为________.

选项

答案C1e一4x+C2e3x+x2+3x+2(其中C1,C2为任意常数).

解析 显然λ=一4是特征方程λ2+λ+q=0的解,故q=一12,
即特征方程为λ2+λ一12=0,特征值为λ1=一4,λ2=3.
因为x2+3x+2为特征方程y"+y’一12y=Q(x)的一个特解,所以Q(x)=2+2x+3一12(x2+3x+2)=一12x2—34x一19,且通解为y=C1e一4x+C2e3x+x2+3x+2(其中C1,C2为任意常数).
转载请注明原文地址:https://kaotiyun.com/show/O9J4777K
0

相关试题推荐
随机试题
最新回复(0)