首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
admin
2017-11-13
25
问题
设二维随机变量(X,Y)的联合密度函数为f(x,y)=
(1)求随机变量X,Y的边缘密度函数;
(2)判断随机变量X,Y是否相互独立;
(3)求随机变量Z=X+2Y的分布函数和密度函数.
选项
答案
(1)f
X
(X)=∫
-∞
+∞
f(x,y)dy. 当x≤0时,f
X
(x)=0; 当x>0时,f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
0
+∞
2e
-(x+2y)
dy=e
-x
∫
0
+∞
e
-2y
d(2y)=e
-x
, 则f
X
(x)=[*] f
Y
(y)=∫
-∞
+∞
f(x,y)dx, 当y≤0时,f
Y
(y)=0; 当y>0时,f
Y
(y)=∫
0
+∞
2e
-(x+2y)
dx=2e
-2y
∫
0
+∞
e
-x
dx=2e
-2y
, 则f
Y
(y)=[*] (2)因为f(x,y)=f
X
(x)f
Y
(y),所以随机变量X,Y相互独立. (3)F
Z
(z)=P(Z≤z)=P(X+2y≤z)=[*]f(x,y)dxdy, 当z≤0时,F
Z
(z)=0; 当z>0时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OAr4777K
0
考研数学一
相关试题推荐
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且an≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.
直线L的方向向量为s=(一1,0,2),而平面π的法向量n=(2,一1,1),所以s.n=一1×2+0×(一1)+2×1=0,所以s⊥n,所以直线L与平面π平行,而直线上一点(1,1,一2)代入平面方程2x—y+z+1=0中,有:2×1—1+(一2)+1=
直线L的方向向量s=(1,2,一3)×(一2,6,0)=(18,6,10),平面π的法向n=(2,一1,一3),所以s.n=18×2+6×(一1)+10×(一3)=0,故s⊥n,即直线L∥平面π,取直线上一点,令z=0,则[*]代入平面方程中,得到:[*]
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,计算PQ;
设随机变量(X,Y)的联合密度函数为设Z=X+Y,求Z的概率密度函数.
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体的简单样本,其中参数μ,σ未知,令,则假设H0:μ=0的t检验使用统计量____________.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
随机试题
婴儿腹泻伴水、电质紊乱时,下列哪项叙述不正确()
女性,出生7d。母亲代诉患儿烦躁不安,啼哭,拒绝进食。口腔检查见左颊部及舌尖部有散在分布的雪白色柔软小斑点,基底黏膜充血明显。稍用力可擦去,留下出血的糜烂面。初步诊断为
成本可分为固定成本和可变成本,假设生产规模一定,以下说法中正确的是:
(2012年)金融衍生品市场上有不同类型的交易主体。如果某主体利用两个不同黄金期货市场的价格差异,同时在这两个市场上贱买贵卖黄金期货,以获得无风险收益,则该主体属于()。
下列各项中,影响企业对股份支付预计可行权情况作出估计的有()。(2020年回忆版)
【2014.河南三门峡】简述中小学生心理健康的标准。
通过破坏产生死锁的4个必要条件之一,可以保证不让死锁发生。其中采用资源有序分配法,是破坏( )。
•Lookatthestatementsbelowandatthefiveshortsummariesontheoppositepageaboutbusinessbooksonleadership&manageme
RobertSpring,a19thcenturyforger,wassogoodathisprofessionthathewasabletomakehislivingfor15yearsbyselling
A、TheComputerCenter.B、Thelibrary.C、Thephotocopyingfacilities.D、Thelecturerooms.AWhatfacilitiesaresatisfactorytot
最新回复
(
0
)