首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
设二维随机变量(X,Y)的联合密度函数为f(x,y)= (1)求随机变量X,Y的边缘密度函数; (2)判断随机变量X,Y是否相互独立; (3)求随机变量Z=X+2Y的分布函数和密度函数.
admin
2017-11-13
51
问题
设二维随机变量(X,Y)的联合密度函数为f(x,y)=
(1)求随机变量X,Y的边缘密度函数;
(2)判断随机变量X,Y是否相互独立;
(3)求随机变量Z=X+2Y的分布函数和密度函数.
选项
答案
(1)f
X
(X)=∫
-∞
+∞
f(x,y)dy. 当x≤0时,f
X
(x)=0; 当x>0时,f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
0
+∞
2e
-(x+2y)
dy=e
-x
∫
0
+∞
e
-2y
d(2y)=e
-x
, 则f
X
(x)=[*] f
Y
(y)=∫
-∞
+∞
f(x,y)dx, 当y≤0时,f
Y
(y)=0; 当y>0时,f
Y
(y)=∫
0
+∞
2e
-(x+2y)
dx=2e
-2y
∫
0
+∞
e
-x
dx=2e
-2y
, 则f
Y
(y)=[*] (2)因为f(x,y)=f
X
(x)f
Y
(y),所以随机变量X,Y相互独立. (3)F
Z
(z)=P(Z≤z)=P(X+2y≤z)=[*]f(x,y)dxdy, 当z≤0时,F
Z
(z)=0; 当z>0时, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OAr4777K
0
考研数学一
相关试题推荐
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
直线L的方向向量s=(1,2,一3)×(一2,6,0)=(18,6,10),平面π的法向n=(2,一1,一3),所以s.n=18×2+6×(一1)+10×(一3)=0,故s⊥n,即直线L∥平面π,取直线上一点,令z=0,则[*]代入平面方程中,得到:[*]
设随机变量(X,Y)的联合密度函数为设Z=X+Y,求Z的概率密度函数.
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设一设备在时间长度为t的时间内发生故障的次数N(t)~P(λt).求设备在无故障工作8小时下,再无故障工作8小时的概率.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设f(x)=.求f(x)的间断点,并说明间断点的类型,如是可去间断点,则补充或改变定义使它连续.
随机试题
TheInternetisfullofget-rich-quickschemers,andmanybigfatliars—andtheyalltrytogetadsfortheir"businesses"tosh
疑诊特发性肺纤维化的患者,下列哪些情况对鉴别诊断具有重要意义
某综合楼防雷接地系统如图6一Ⅲ一1所示。注:①图示标高以室外地坪为±0.00计算。不考虑墙厚,也不考虑引下线与避雷网、引下线与断接卡子的连接耗量;②避雷网均采用一25×4镀锌扁钢,C~D和③~④部分标高为24m,其余
依法批准开工报告的建设工程,应在开工报告批准之日起()将安全施工保证措施报相关部门备案。
书面合同是指以文字的方式表现当事人之间所订合同内容的形式,包括()
我国横断山脉是具有国际意义生物多样性的关键地区,横亘()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
谶纬之学
A:Canyoukeepaneyeonmybag?B:______A:No.I’mgoingtothebathroom.
下列各项中,不能作为软件需求分析工具的是()。
最新回复
(
0
)