首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组为正定矩阵,求a,并求当时XTAX的最大值.
设齐次线性方程组为正定矩阵,求a,并求当时XTAX的最大值.
admin
2018-05-25
132
问题
设齐次线性方程组
为正定矩阵,求a,并求当
时X
T
AX的最大值.
选项
答案
因为方程组有非零解,所以[*]=a(a+1)(a-3)=0,即a=-1或a=0或a=3.因为A是正定矩阵,所以a
ij
>0(i=1,2,3),所以a=3.当a=3时,由 [*] =(λ-1)(λ-4)(λ-10)=0 得A的特征值为1,4,10.因为A为实对称矩阵,所以存在正交矩阵Q,使得 f=X
T
AX[*]y
1
2
+4y
2
2
+10y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
) 而当[*]时, y
1
2
+y
2
2
+y
3
2
=Y
T
Y=Y
T
Q
T
QY=(QY)
T
(QY)=X
T
X=||X||
2
=2 所以当[*]时,X
2
2
AX的最大值为20(最大值20可以取到,如y
1
=y
2
=0,y
3
=[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/OKX4777K
0
考研数学三
相关试题推荐
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
设函数f(y)的反函数f-1(x)及fˊ[f-1(x)]与fˊˊ[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n-1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
已知fn(x)满足fˊn(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设f(x)为连续函数,证明:
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
设则|一2A-1|=_________.
随机试题
12型链条式抽油机的优点有哪些?
英国于1665年创办、今天仍在出版的学术性季刊是________。
柳氮磺吡啶(SASP)治疗溃疡性结肠炎的机制是
男性,32岁。其母有高血压。既往健康,3个月前工厂健康检查时发现高血压。1个月前在工作中发生剧烈头痛,心悸,给予降压药物后血压时正常时高。血压增高多在体力活动后发生,持续10分钟至2小时,没有视力障碍及出汗。近几个月体重减少,出现便秘。血压在150~260
问月经史时要注意问月经的( )问带下时要注意问带下的( )
采用深层搅拌法进行地基加固处理,其适用条件为()。
根据国家有关规定,事业单位要建立以()为主的基本用人制度。
A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?
阅读以下文字,完成下列题。大爆炸理论的最直接的证据来自于对遥远星系光线特征的研究。在20世纪20年代美国天文学家埃德温•哈勃测量了18颗恒星(它们距地球的距离是已知的)发出来的光,发现它们都全部存在着红移。哈勃得出结论,这些恒星一定相对于我们(观
CDMA系统中使用的多路复用技术是(62)。我国自行研制的移动通信3G标准是(63)。
最新回复
(
0
)