首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组为正定矩阵,求a,并求当时XTAX的最大值.
设齐次线性方程组为正定矩阵,求a,并求当时XTAX的最大值.
admin
2018-05-25
95
问题
设齐次线性方程组
为正定矩阵,求a,并求当
时X
T
AX的最大值.
选项
答案
因为方程组有非零解,所以[*]=a(a+1)(a-3)=0,即a=-1或a=0或a=3.因为A是正定矩阵,所以a
ij
>0(i=1,2,3),所以a=3.当a=3时,由 [*] =(λ-1)(λ-4)(λ-10)=0 得A的特征值为1,4,10.因为A为实对称矩阵,所以存在正交矩阵Q,使得 f=X
T
AX[*]y
1
2
+4y
2
2
+10y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
) 而当[*]时, y
1
2
+y
2
2
+y
3
2
=Y
T
Y=Y
T
Q
T
QY=(QY)
T
(QY)=X
T
X=||X||
2
=2 所以当[*]时,X
2
2
AX的最大值为20(最大值20可以取到,如y
1
=y
2
=0,y
3
=[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/OKX4777K
0
考研数学三
相关试题推荐
设函数f(x)有连续导数,F(x)=∫0xf(t)fˊ(2a-t)dt.证明:F(2a)-2F(a)=f2(a)-f(0)f(2a).
极限=A≠0的充要条件是()
曲线y=的渐近线是________.
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R万元与电台广告费x1万元及报纸广告费用x2万元之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22.(1)在广告费用不限的情况下,求最优广告
根据阿贝尔定理,已知(x-x0)n在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1-x0|;(2)若在x1处发散,则收敛半径R≤|x1-x0|;(3)若在x1处条件收敛,则收
设γ1,γ2,…,γt和η1,η2…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设则必有().
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
随机试题
通用寄存器组的相关有两种解决办法,分别是_______和_______。
《儿女英雄传》的题材类型是()
患者男,84岁。近期出现记忆力下降,静止性震颤,临床诊断为帕金森病。早期,轻症的首先药物为
肛周脓肿常见的后遗症是内痔环切术常有的后遗症是
请简述世亚行对国际竞争性招标(ICB)的审查程序。
《室外排水设计规范》规定,污水管道最小管径为()mm。
19世纪末,维新变法从一种思潮得以发展为一场政治运动,关键是()。
Inthepresenteconomic_______wecanmakeevengreaterprogressthanpreviously.
Demographyisthestatisticalstudyofhumanpopulations.Itcanbeageneralsciencethatcanbeappliedtoanykindof
Ialwayspreferstartingearly,ratherthan(leave)______everythingtothelastminute.
最新回复
(
0
)