首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
admin
2019-07-19
18
问题
求经过直线
且与椭球面S:x
2
+2y
2
+3z
2
=21相切的切平面方程.
选项
答案
方法一 设切点为M(x
0
,y
0
,z
0
),于是S在点M处的法向量n=(2x
0
,4y
0
,6z
0
),切 平面方程为 2x
0
(x-x
0
)+4y
0
(y-y
0
)+6z
0
(z-z
0
)=0. 再利用S的方程化简得 x
0
x+2y
0
y+3z
0
z=21. 在L上任取两点,例如点[*],代入上式得 [*] 再由S的方程[*],联立解得切点(3,0,2)与(1,2,2),故得切平面方程为x+2z=7和x+4y+6z=21. 方法二 直线L的方程可写成x-2y=0,x+2z-7=0.经过L的平面束方程可写成 x-2y+λ(x+2z-7)=0, ① 即 (1+λ)x-2y+2λz-7λ=0. 椭球面S在点M(x
0
,y
0
,z
0
)的法向量为n=(2x
0
,4y
0
,6z
0
),于是有 [*] 又M在S上,又在切平面上,故有 [*] 及 (1+λ)x
0
=2y
0
+2λz
0
-7λ=0, ④ 由式②、③、④联立解得[*],x
0
=1,y
0
=2,z
0
=2.于是得切平面方程x+4y+6z=21. 但注意,采用平面束方程①时,它并不包括方程x+2z-7=0在内.它是否也是适合条件的另一解呢?为此,有两个办法来进一步检查.一是将平面束方程写成 x+2z-7+μ(x-2y)=0, 按上述办法重新做一遍,得μ=0,即x+2z-7=0也是解. 另一办法是,将x+2z-7=0与S:x
2
+2y
2
+3z
2
=21联立,得2y
2
+7(z-2)
2
=0,得y
0
=0,z
0
=2,从而x
0
=3.点(x
0
,y
0
,z
0
)=(3,0,2)在平面x+2z-7=0上,也在曲面S:x
2
+2y
2
+3z
2
=21上,并且在该点处,两者的法向量(1,0,2)与(6,0,12)平行,故平面x+2z-7=0与曲面S的确在点(3,0,2)处相切,前者也是后者的一个切平面.得二解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oyc4777K
0
考研数学一
相关试题推荐
设曲线L是区域D的正向边界,那么D的面积为()
向量组(I):α1,α2,…,αm线性无关的充分条件是(I)中
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设随机点(X,Y)在单位圆内的联合密度为(Ⅰ)求常数C;(Ⅱ)判断X,Y的独立性与相关性;(Ⅲ)设随机点的极坐标为(R,θ),求(R,θ)的联合密度,并判断R,θ的独立性.
设平面方程为Ax+Cz+D=0,其中A,C,D均不为零,则平面()
质点P沿以AB为直径的半圆从点A(1,2)到点B(3,4)运动,受力F的作用,力的大小等于|OP|,方向垂直于线段OP且与y轴的夹角为锐角,求力F所做的功.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明=n;(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设随机变量X的概率密度求方差D(X)和D(X3).
求极限
求由曲面z=x2+y2和所围成的几何体的体积V和表面积S。
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)