首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
admin
2019-07-19
19
问题
求经过直线
且与椭球面S:x
2
+2y
2
+3z
2
=21相切的切平面方程.
选项
答案
方法一 设切点为M(x
0
,y
0
,z
0
),于是S在点M处的法向量n=(2x
0
,4y
0
,6z
0
),切 平面方程为 2x
0
(x-x
0
)+4y
0
(y-y
0
)+6z
0
(z-z
0
)=0. 再利用S的方程化简得 x
0
x+2y
0
y+3z
0
z=21. 在L上任取两点,例如点[*],代入上式得 [*] 再由S的方程[*],联立解得切点(3,0,2)与(1,2,2),故得切平面方程为x+2z=7和x+4y+6z=21. 方法二 直线L的方程可写成x-2y=0,x+2z-7=0.经过L的平面束方程可写成 x-2y+λ(x+2z-7)=0, ① 即 (1+λ)x-2y+2λz-7λ=0. 椭球面S在点M(x
0
,y
0
,z
0
)的法向量为n=(2x
0
,4y
0
,6z
0
),于是有 [*] 又M在S上,又在切平面上,故有 [*] 及 (1+λ)x
0
=2y
0
+2λz
0
-7λ=0, ④ 由式②、③、④联立解得[*],x
0
=1,y
0
=2,z
0
=2.于是得切平面方程x+4y+6z=21. 但注意,采用平面束方程①时,它并不包括方程x+2z-7=0在内.它是否也是适合条件的另一解呢?为此,有两个办法来进一步检查.一是将平面束方程写成 x+2z-7+μ(x-2y)=0, 按上述办法重新做一遍,得μ=0,即x+2z-7=0也是解. 另一办法是,将x+2z-7=0与S:x
2
+2y
2
+3z
2
=21联立,得2y
2
+7(z-2)
2
=0,得y
0
=0,z
0
=2,从而x
0
=3.点(x
0
,y
0
,z
0
)=(3,0,2)在平面x+2z-7=0上,也在曲面S:x
2
+2y
2
+3z
2
=21上,并且在该点处,两者的法向量(1,0,2)与(6,0,12)平行,故平面x+2z-7=0与曲面S的确在点(3,0,2)处相切,前者也是后者的一个切平面.得二解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oyc4777K
0
考研数学一
相关试题推荐
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是()
Ω是由x2+y2=z2与z=a(a>0)所围成的区域,则三重积分在柱面坐标系下累次积分的形式为()
如果级数()
曲线积分∮C(x2+y2)ds,其中C是圆心在原点、半径为a的圆周,则积分值为()
设0<a<b,证明:
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα2=(Ar+2,1,…,Ar+2,n)T…αn—
级数的和等于()
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
随机试题
哲学上的两大基本派别是指()
在国家标准《中医临床诊疗术语》中消化性溃疡的命名为
木香主治
根据《综合交通网中长期发展规划》,综合交通枢纽的划分不包括()。
当市场平均收益率为11%,企业的收益率为12%,国库券利率为5%,企业债券利率为8%,被评估企业所在行业的风险系数为0.8,被评估企业的风险报酬率最接近于()。
弗里德曼的货币需求函数强调()对货币需求起主要作用。
下列担保物权中,属于转移占有的担保物权有()。
设收敛,则下列正确的是().
下列关于信息和数据的叙述不正确的是()。
Oneofthemostdifficultaspectsofdecidingwhethercurrentclimaticeventsrevealevidenceoftheimpactofhumanactivities
最新回复
(
0
)