首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
求经过直线且与椭球面S:x2+2y2+3z2=21相切的切平面方程.
admin
2019-07-19
17
问题
求经过直线
且与椭球面S:x
2
+2y
2
+3z
2
=21相切的切平面方程.
选项
答案
方法一 设切点为M(x
0
,y
0
,z
0
),于是S在点M处的法向量n=(2x
0
,4y
0
,6z
0
),切 平面方程为 2x
0
(x-x
0
)+4y
0
(y-y
0
)+6z
0
(z-z
0
)=0. 再利用S的方程化简得 x
0
x+2y
0
y+3z
0
z=21. 在L上任取两点,例如点[*],代入上式得 [*] 再由S的方程[*],联立解得切点(3,0,2)与(1,2,2),故得切平面方程为x+2z=7和x+4y+6z=21. 方法二 直线L的方程可写成x-2y=0,x+2z-7=0.经过L的平面束方程可写成 x-2y+λ(x+2z-7)=0, ① 即 (1+λ)x-2y+2λz-7λ=0. 椭球面S在点M(x
0
,y
0
,z
0
)的法向量为n=(2x
0
,4y
0
,6z
0
),于是有 [*] 又M在S上,又在切平面上,故有 [*] 及 (1+λ)x
0
=2y
0
+2λz
0
-7λ=0, ④ 由式②、③、④联立解得[*],x
0
=1,y
0
=2,z
0
=2.于是得切平面方程x+4y+6z=21. 但注意,采用平面束方程①时,它并不包括方程x+2z-7=0在内.它是否也是适合条件的另一解呢?为此,有两个办法来进一步检查.一是将平面束方程写成 x+2z-7+μ(x-2y)=0, 按上述办法重新做一遍,得μ=0,即x+2z-7=0也是解. 另一办法是,将x+2z-7=0与S:x
2
+2y
2
+3z
2
=21联立,得2y
2
+7(z-2)
2
=0,得y
0
=0,z
0
=2,从而x
0
=3.点(x
0
,y
0
,z
0
)=(3,0,2)在平面x+2z-7=0上,也在曲面S:x
2
+2y
2
+3z
2
=21上,并且在该点处,两者的法向量(1,0,2)与(6,0,12)平行,故平面x+2z-7=0与曲面S的确在点(3,0,2)处相切,前者也是后者的一个切平面.得二解.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oyc4777K
0
考研数学一
相关试题推荐
比较下列积分值的大小:
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设P=,Q为三阶非零矩阵,且PO=O,则().
质点P沿以AB为直径的半圆从点A(1,2)到点B(3,4)运动,受力F的作用,力的大小等于|OP|,方向垂直于线段OP且与y轴的夹角为锐角,求力F所做的功.
级数()
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
设有级数an收敛的
设在[0,1]上f″(x)>0,则f′(0),f′(1),f(1)—f(0)或f(0)—f(1)的大小顺序是()
已知的一个特征向量。问A能不能相似对角化?并说明理由。
随机试题
流产后1周,阴道血性分泌物淋漓不尽,发热2天,下腹痛伴血性白带,查:子宫颈已闭,子宫稍大,压痛,双侧附件可触及拇指大小的肿块,压痛明显,体温38.50℃,血红蛋白110g/L,WBC15×109/L,N0.84最可能的诊断是
现代工程咨询方法体系中的市场分析方法包括()。
连续竞价时,某只股票的卖出申报价格为15元,市场即时的最低买入价格为14.98元,则此交易不能成交。()
发票管理的基础环节是( )。
企业采用出包方式购建固定资产,按合同规定预付的工程款,应通过()科目核算。
下列法的形式中,属于国家的根本大法、具有最高法律效力的是()。
剔发令
京杭大运河北起北京,南至杭州,经过北京、()、河北、山东、江苏和浙江六省市,沟通了海河、黄河、淮河、长江、钱塘江五大水系。
______gotinthewheatthanitbegantorainheavily.
Scientiststhinkthemoralists’warningis______.Thephrase"becaughtwithpantsdown"inthefirstparagraphprobablymeans
最新回复
(
0
)