首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)连续且恒大于零, 其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。 (Ⅰ)讨论F(t)在区间(0,+∞)内的单调性; (Ⅱ)证明当t>0时,F(t)>
设函数f(x)连续且恒大于零, 其中Ωt={(x,y,z)|x2+y2+z2≤t2},Dt={(x,y)|x2+y2≤t2}。 (Ⅰ)讨论F(t)在区间(0,+∞)内的单调性; (Ⅱ)证明当t>0时,F(t)>
admin
2018-11-22
58
问题
设函数f(x)连续且恒大于零,
其中Ω
t
={(x,y,z)|x
2
+y
2
+z
2
≤t
2
},D
t
={(x,y)|x
2
+y
2
≤t
2
}。
(Ⅰ)讨论F(t)在区间(0,+∞)内的单调性;
(Ⅱ)证明当t>0时,F(t)>
选项
答案
(Ⅰ)因为 [*] 在(0,+∞)上F’(t)>0,故F(t)在(0,+∞)内单调增加。 (Ⅱ)由于 [*] 要证明t>0时F(t)>[*],只需证明t>0时,F(t)-[*]>0,即 [*] 故g(t)在(0,+∞)内单调增加。 因为g(t)在t=0处连续,所以当t>0时,有g(t)>g(0)=0。 因此,当t>0时,F(t)>[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JsM4777K
0
考研数学一
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=______。
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=,k=0,1。试求:X0和X1的联合分布律;
已知A=,且A的行和相等。A能否相似对角化,若能,请求出正交矩阵Q使得QTAQ为对角矩阵,若不能,请说明理由。
设A,B是两个随机事件,当A,B同时发生时,事件C一定发生,下列结论正确的是()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
累次积分∫0π/2dθ∫0cosθf(ρcosθ,ρsinθ)ρdρ采用直角坐标系可表示为()
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设求与A乘积可交换的所有矩阵.
随机试题
Thankstosomenewinventions,doctorscantreatthisdiseasesuccessfully.
能阻断组胺H2受体且不良反应较少的药物是
新拌混凝土的工作性又称()。
在会计核算软件中,出纳管理功能通常包括()。
2008年某企业拥有房产原值共计8000万元,其中生产经营用房原值6500万元、内部职工医院用房原值500万元、托儿所用房原值300万元、超市用房原值700万元。当地政府规定计算房产余值的扣除比例为20%,2008年该企业应缴纳房产税()
汉密尔顿焦虑量表主要涉及()因子。
在班集体建设中最关键的因素是()。
“树欲静而风不止”,这句话反映了()。
以下叙述中正确的是
TheSkillsRequiredtoGetaJobI.Academicskills:basicfoundation1.Communicationskills—Understandandspeakthelang
最新回复
(
0
)