首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
admin
2019-04-22
52
问题
设A是n阶实反对称矩阵,证明(E-A)(E+A)
-1
是正交矩阵.
选项
答案
[(E-A)(E+A)
T
][(E-A)(E+A)
-1
]
T
=(E-A)(E+A)
-1
[(E+A)
-1
]
T
(E-A)
T
=(E-A)(E+A)
-1
[(E+A)
T
]
-1
(E+A) =(E-A)(E+A)
-1
(E-A)
-1
(E+A) =(E-A)[(E-A)(E+A)]
-1
(E+A) =(E-A)[(E+A)(E-A)]
-1
(E+A) =(E-A)(E-A)
-1
(E+A)
-1
(E+A)=E. 所以 (E-A)(E+A)
-1
是正交矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/P3V4777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设矩阵,矩阵B满足AB+B+A+2E=0,则|B+E|=()
方程y〞-2y′+3y=eχsin()的特解的形式为
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设函数f(x)在定义域内可导,y=f(x)的图形如图1—2—2所示,则导函数y=f’(x)的图形为()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求极限.
随机试题
与Babinski征意义相同的病理征是
半夏白术天麻汤的组成药物不包括
分项工程质量评定的合格标准包括()。
铺轨机铺轨后,地面轨排(),吊起的铺轨排不得伸出铺轨机。
决定职业健康安全与环境管理的持续性的特点是()。
在平面直角坐标系中,O点坐标为(0,0),A点坐标为(3,-4),将向量沿顺时针方向旋转,得到向量,则的坐标为().
A、 B、 C、 BCouldyou…?(你可以做……吗?)请求→接受后再附加说明
Inmodernsocietythereisagreatdealofargumentaboutcompetition.Somevalueithighly,believingthatitisresponsiblefo
A、Itisverycheap.B、Itcanmakepeoplehighlydizzy.C、Itprovideswayforpoorpeopletoescapefromthemiseryofslumlivin
Fordays,Beijinghasbeentrappedunderablanketofyellow-browndustthattheU.S.Embassyairmonitorclassifies,initsho
最新回复
(
0
)