首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若矩阵A可逆,则其逆矩阵必然唯一.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
admin
2017-09-15
93
问题
证明:若矩阵A可逆,则其逆矩阵必然唯一.
选项
答案
设存在可逆阵B,C,使得AB=AC=E,于是A(B-C)=O,故r(A)+r(B-C)≤n,因为A可逆,所以r(A)=n,从而r(B-C)=0,B-C=O,于是B=C,即A的逆矩阵是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/Zdt4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
[*]应先在xy平面上用阴影标出(X,Y)联合分布密度函数不等于0的部分,同时画出直线x+y=z=常数,根据与阴影部分相交的不同情况分为有关不同z的5种情况,然后进行计算.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
随机试题
我国的市商贸易已有了一定发展,并开始使用货币是在_____。
交感舒血管纤维末梢释放的递质是
铜蓝蛋白的主要功用是
根据《危险化学品安全管理条例》的规定,与危险化学品的生产装置和储存设施之间的距离须符合国家标准或者国家有关规定的是()。
工程中使用的沥青碎石混合料(AN)的组成结构属于()。
李先生参加了X市的住房公积金制度,打算购买一套价值50万元的自住普通住房。首付房款为房价的30%。李先生打算申请个人住房公积金贷款,根据x市的相关规定,李先生可申请的个人住房公积金贷款最高额度为10万元。由于个人住房公积金贷款仍不足以支付剩余的房款,李先生
计算机网络的资源共享功能包括()。
[*]
设f(x)=sinx,g(x)=则f[g(x)]的连续区间为_______.
InevertrustedhimbecauseIalwaysthoughtofhimassucha______character.
最新回复
(
0
)