首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a,b为何值时, (1)β不能用α1,α2,α3线性表示; (2)β能用α1,α2,α3唯一地线性表示,求表示式
admin
2020-03-05
13
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+2b)
T
,β=(1,3,-3)
T
.试讨论当a,b为何值时,
(1)β不能用α
1
,α
2
,α
3
线性表示;
(2)β能用α
1
,α
2
,α
3
唯一地线性表示,求表示式;
(3)β能用α
1
,α
2
,α
3
线性表示,且表示式不唯一,求表示式的一般形式.
选项
答案
记A=(α
1
,α
2
,α
3
),则问题化为线性方程组AX=β解的情形的讨论及求解问题了. [*] (1)a=0(b任意)时 [*] 方程组AX=β无解,β不能用α
1
,α
2
,α
3
线性表示. (2)当a≠0,a≠b时,r(A|β)=r(A)=3,方程组AX=β有唯一解,即β可用α
1
,α
2
,α
3
唯一 表示. [*] AX=β的解为([*],-1,0)
T
,于是β=[*]. (3)当a=b≠0时r(A|β)=r(a)=2,AX=β有无穷多解,即β可用α
1
,α
2
,α
3
线性表示,且表示式不唯一. [*] AX=β有特解([*],0)
T
,而(0,1,1)
T
构成AX=0的基础解系,AX=β的通解为 ([*],0)
T
+c(0,1,1)
T
,c任意. 即β=[*]α
2
+cα
3
,c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/PMS4777K
0
考研数学一
相关试题推荐
若r(α1,α2,…,αs)=r,则
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
函数f(x)=xsinx()
设随机变量X的方差为2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2}≤________。
在区间(0,1)中随机地取出两个数,则“两数之积小于”的概率为________。
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
设总体X,Y相互独立且服从N(0,9)分布,(X1,…,X9)与(Y1,…,Y9)分别为来自总体X,Y的简单随机样本,则U=~___________.
设z=z(x,y)由z—ez2xy=3确定,则曲面z=z(x,y)在点P0(1,2,0)处的切平面方程为___________。
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量求方差。
随机试题
王禹偁的_______有意效法自居易的平易诗风,其近体诗、绝句则不乏_______的格调,在文的方面,王禹偁既能写古文,又是四六文的高手,王禹偁的文章多有________。
对于二尖瓣狭窄伴主动脉瓣关闭不全,下列哪项不正确()(2000年)
《药品管理法》规定,劣药是指
A.机械性肠梗阻B.单纯性肠梗阻C.麻痹性肠梗阻D.痉挛性肠梗阻E.绞窄性肠梗阻外伤性腹膜后巨大血肿易发生()
依据我国现行法律的规定及相关诉讼理论,关于当事人诉讼权利能力,下列哪一选项是正确的?()(司考.四川.2008.3.48)
房地产居间服务应有如下意识()。
项目结构图是一个重要的组织工具,其反映的是()。
一般会计软件都提供数据备份功能。()
现行《宪法》规定,中央军事委员会主席向()负责。
【2009-3】人力资本理论认为,人力资本是经济增长的关键,教育是形成人力资本的重要力量。这一理论的缺陷是()。
最新回复
(
0
)