首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x). 设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x). 设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数
admin
2019-02-26
40
问题
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x).
设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数学期望.
选项
答案
将λ(x)=α代入得 [*] 上式两边积分得 ∫
0
x
αdT=∫
0
x
{-ln[l-F(t)])’dt, αx+C=-ln[l-F(x)],即1-F(x)=e
-(αx+C)
, 又F(0)=P{x≤0}=0,则C=0,故F(x)=1~e
-αx
,即产品寿命服从指数分布,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dm04777K
0
考研数学一
相关试题推荐
设α,β,γ均为大于1的常数,则级数()
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
已知凹曲线y=f(χ)在曲线上任意一点(χ,f(χ))处的曲率为K=,且f(0)=0,f′(0)=0,则f(χ)=_______。
设A=(aij)m×n,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,χ=(χ1,χ2,…,χm)T,证明方程组Ay=b有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
设有曲线y=,过原点作其切线,则以曲线、切线及χ轴所围成平面图形绕χ轴旋转一周所得到的表面积为_______。
设随机变量(X,Y)的概率密度函数为f(χ,y)=其分布函数为F(χ,y)。(Ⅰ)求F(χ,y);(Ⅱ)分别求(X,Y)关于X,Y的边缘概率密度,并问X与Y是否独立?
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则(Ⅰ)求齐次线性方程组(A-6E)χ=0的通解:(Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
设y=ec,y=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为______
设f(x)在[0,1]上连续,在(0,1)内可导,且证明:(I)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设A是m×n矩阵,B是n×m矩阵。构造(m+n)阶矩阵(Ⅰ)计算HG和GH;(Ⅱ)证明|H|=|Em-AB|=|En-BA|。
随机试题
根据我国《选举法》的规定,有关“由选民直接选举的人大代表候选人提名推荐方式”中,不正确的是()。
油田经济评价步骤包括核定基础数据和计算参数等内容。()
企业基期的销售收入利润率为30%,计划期的销售收入利润率与基期的相同,预计企业的销售收入为7000万元,则企业计划期内的利润额为()
A.C1~3B.C4C.C5D.C6E.C7支配头运动肌的是
填隙碎石适用于()。
对下肢骨牵引患者的护理,错误的是()。
课外活动最基本的组织形式是()
下列选项中,符合所给图形的变化规律的是()。
根据以下资料,回答问题。2000年、2005年、2006年发达国家、发展中国家和世界总体的国际储备(不包括黄金)和黄金储备变化情况,如图所示:部分国家国际储备和黄金储备的变化情况如下表所示:假设黄金价格为500美元/盎司,那么表中各年黄
(259)的软件是系统软件。
最新回复
(
0
)