首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x). 设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x). 设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数
admin
2019-02-26
36
问题
产品寿命X是一个随机变量,其分布函数与概率密度分别为F(x),f(x).产品已工作到时刻x,在时刻x后的单位时间△x内发生失效的概率称为产品在时刻z的瞬时失效率,记为λ(x).
设某产品寿命的瞬时失效率函数为λ(x)=a,其中参数α>0,求产品寿命X的数学期望.
选项
答案
将λ(x)=α代入得 [*] 上式两边积分得 ∫
0
x
αdT=∫
0
x
{-ln[l-F(t)])’dt, αx+C=-ln[l-F(x)],即1-F(x)=e
-(αx+C)
, 又F(0)=P{x≤0}=0,则C=0,故F(x)=1~e
-αx
,即产品寿命服从指数分布,所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dm04777K
0
考研数学一
相关试题推荐
设二次型f(χ1,χ2,χ3)=aχ12+2χ22+2χ32+2b1χ3(b>0),其中二次型的矩阵A的特征值的和为1,特征值的乘积为-12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型化为标准形,并写出所作的正交变换和对应的正交矩阵
在微分方程χ=2y-χ的一切解中求一个解y=y(χ),使得曲线y=y(χ)与直线χ=1,χ=2及y=0所围成的平面图形绕y=0旋转一周的旋转体体积最小。
设总体X的密度函数为f(χ;θ)=,-∞<χ<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。(Ⅰ)利用原点矩求θ的矩估计量;(Ⅱ)求θ的极大似然估计量,并问是否为θ的无偏估计?
曲线,在yOz平面上的投影方程为_________.
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T线性表出,则a=__________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α2+2α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__________.
设∑为由直线绕x轴旋转产生的曲面,则∑上点P(-1,1,一2)处的法线方程为().
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
设A是m×n矩阵,B是n×m矩阵。构造(m+n)阶矩阵(Ⅰ)计算HG和GH;(Ⅱ)证明|H|=|Em-AB|=|En-BA|。
随机试题
福利国家的最初尝试起始于()
失笑散的功用是
喹诺酮类药物的抗菌机制是()。
患者上前牙龋充填后三天出现自发痛,不敢咬合。查:充填体,叩(++),松动I度,牙龈轻红肿,冷热测无反应,该患牙三天前处理中的问题最可能是
诊断自主性功能亢进性甲状腺腺瘤最佳的甲状腺检查是
监理工程师对施工图审核的重点是( )。
《危险性较大的分部分项工程安全管理办法》规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案。下述选项中属于专项方案施工安全保证措施的是()。
某企业收同货款25000元存入银行,记账凭证的记录为:“借:银行存款25800,贷:其他应收款25800”,并已登记入账。更正时需要做的会计分录包括()
城市社区与农村社区的主要区别。(中山大学2011年研)
根据婚姻法的明确规定,下列哪些人之间禁止结婚?()
最新回复
(
0
)