首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明当n>1时An=An-2+A2-E. (2)求An.
设A= (1)证明当n>1时An=An-2+A2-E. (2)求An.
admin
2021-11-09
39
问题
设A=
(1)证明当n>1时A
n
=A
n-2
+A
2
-E.
(2)求A
n
.
选项
答案
(1)A
n
=A
n-2
+A
2
-E即 A
2
-A
n-2
=A
2
-E. A
n-2
(A
2
-E)=A
2
-E. 只要证明A(A
2
-E)=A
2
-E.此式可以直接检验: [*] A(A
2
-E)=[*]=A
2
-E. (2)把A
n
=A
n-2
+A
2
-E作为递推公式求A
n
. n是偶数2k时:A
2k
=A
2k-2
+A
2
-E=A
2k+4
+2(A
2
-E)=……=k(A
2
-E)+E. n是奇数2k+1时:A
2k+1
=AA
2k
=A[k(A
2
-E)+E]=k(A
2
-E)+A.
解析
转载请注明原文地址:https://kaotiyun.com/show/PMy4777K
0
考研数学二
相关试题推荐
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
=_______.
计算dχdy(a>0),其中D是由曲线y=-a+和直线y=-χ所围成的区域.
设f(χ)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt-f(2)+f(3).证明:(1)存在ξ1,ξ2∈(0,3),使得f′(ξ1)=f′(ξ2)=0.(2)存在ξ∈(0,3),使得f〞(ξ)-2f′(ξ
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设F(x)=,其中f’(x)在x=0处连续,且当x→0时,F’(x)~x2,则f’(0)=________.
求极限.
极限=_________.
抛物线y2=ax(a>0)与x=1所围面积为,则a=_______.
随机试题
子宫平滑肌兴奋药有:
0.9%NaCl溶液和10%葡萄糖溶液对人细胞内液来说
【2010年真题】为了提高工程项目风险识别的效率和规范性,同时可便于风险识别资料的积累,有必要建立()。
在下列有关可转让信用证的说明中,错误的说法是()。
某只债券在银行间债券市场交易流通终止的日期称为()。
企业的财务活动包括()。
利他行为的特征有()。
五十多年后回顾这段历史,杜老依然________,然而他也没有________土改实施过程中的缺陷,例如消灭富农和侵犯中农,以及没有严格依法保护劳动者财产利益。填入划横线部分最恰当的一项是()。
[2017年]差分方程yt+1-2yt=2t的通解为___________.
计算每名运动员的"得分"的正确SQL命令是( )。
最新回复
(
0
)