首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为( ).
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为( ).
admin
2019-08-27
54
问题
设3维列向量组α
1
,α
2
,α
3
线性无关,γ
1
=α
1
+α
2
-α
3
,γ
2
=3α
1
-α
2
,γ
3
=4α
1
-α
3
,γ
4
=2α
1
—2α
2
+α
3
,则向量组γ
1
,γ
2
,γ
3
,γ
4
的秩为( ).
选项
A、l
B、2
C、3
D、4
答案
B
解析
【思路探索】利用γ
1
,γ
2
,γ
3
,γ
4
与α
1
,α
2
,α
3
之间的线性表示关系求解.
由α
1
,α
2
,α
3
线性无关,A可逆,所以,R(B)=R(C).
故R(B)=R(C)=2.
故应选(B).
转载请注明原文地址:https://kaotiyun.com/show/k2A4777K
0
考研数学二
相关试题推荐
设常数a﹥0,积分,试比较I1与I2的大小,要求写明推导过程.
设f(x)=,则下列关于f(x)的单调性的结论正确的是()
设F(X)在x=x0处连续,则f(x0)是f(x0)为极值的()
微分方程2y”-5y’﹢2y=xe2x的通解为y=_______.
设2阶矩阵A有特征值λ1=1,λ2=-1.则B=A3-A2-A﹢E=_______.
设p(x),q(x),f(x)≠0均是关于x的已知连续函数,y1(x),y2(x),y3(x)是y”﹢p(x)y’﹢q(x)y=f(x)的3个线性无关的解,C1,C2是两个任意常数,则该非齐次方程的通解是()
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A一E)及行列式|A+2E|.
设矩阵,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
A为n(n≥3)阶非零实矩阵,Aij为|A|中元素aij的代数余子式,试证明:aij=一AijATA=E且|A|=一1.
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为,求A.
随机试题
与阑尾炎发病无关的因素是
判断窒息最有力的依据是
A.山药B.麻黄C.冰片D.独活E.丁香易升华饮片是()。
《消防监督检查规定》(公安部第120号令)规定,确定为火灾隐患的情形有()。
3,18,60,147,()
服务窗口是群众和政府部门接触最多、最直接的地方,其一言一行、一举一动,都关系着政府的威信和“脸面”。政府部门尤其是窗口部门开始面临一些挑战,如调查发现某镇政府办事大厅工作人员上班期间上网聊天、打游戏、出去吃饭等,扰乱了正常工作秩序,降低了工作效率,有损干部
申请设立的公司通过了工商行政管理机关对其公司设立核准,则该公司的成立之日是()。
电灯:光亮
fiscalyear
Beforerefrigerators,homesusuallyhadiceboxes.But【S1】______waytokeepfoodcoolwithouttheneedforelectricityistouse
最新回复
(
0
)