首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,证明二次型f(x1,x2,…,xn)=xTATAx正定的充要条件是r(A)=n.
设A为n阶矩阵,证明二次型f(x1,x2,…,xn)=xTATAx正定的充要条件是r(A)=n.
admin
2021-07-27
52
问题
设A为n阶矩阵,证明二次型f(x
1
,x
2
,…,x
n
)=x
T
A
T
Ax正定的充要条件是r(A)=n.
选项
答案
由正定二次型的定义,二次型f(x
1
,x
2
,…,x
n
)=x
T
A
T
Ax正定的充要条件是对于任意给定的n维非零列向量x≠0.总有(Ax)
T
Ax>0,即Ax≠0.又对于任意给定的n维非零列向量x≠0,Ax≠0的充要条件是齐次线性方程组Ax=0仅有零解.即r(A)=n.从而,二次型f(x
1
,x
2
,…,x
n
)=x
T
A
T
Ax正定的充要条件是r(A)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/PQy4777K
0
考研数学二
相关试题推荐
n阶矩阵A和B具有相同的特征值是A和B相似的()
设n阶矩阵A与B等价,则必有
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一10x22.(1)在广告
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设A,B均为正定矩阵,则()
设f(x)是二阶常系数非齐次线性微分方程y’’+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)-0的特解,则当x→0时,()
向量组α1,α2,…,αs线性无关的充分条件是
下列二次型中是正定二次型的是()
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f的矩阵和一f的矩阵合同,则必有()
随机试题
(2010年真题)简要回答对外贸易乘数原理。
质控部门对各台离心机的各种性能检查次数为
患者,女性,30岁,因下肢水肿2周就诊。体检:血压200/100mmHg,尿蛋白(+++),红细胞10~15个/HP,血Cr150μmol/L。对本例诊断和鉴别诊断帮助最大的检查是
参苓白术散的组成药物不包括
设计合同示范文本规定,发包人的责任有( )。
下列各项中属于资本金的筹集方式的是()。
2006年6月30日,中国证监会发布的《证券公司融资融券试点管理办法》是融资融券业务的基础性指导文件。()
股份设质应当订立书面合同,并在证券登记机构办理出质登记,质押合同自登记次日起生效。()
如果认为使用区间估计方法是恰当的,注册会计师作一出自己的区间估计以评价管理层的点估计时,下列()说法是不正确的。
Asanyonewhohastriedtoloseweightknows,realisticgoal-settinggenerallyproducesthebestresults.That’spartiallybecau
最新回复
(
0
)