首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+α2+…+(n-1)αn-1-0,b=α1+α2+…+αn. (1)证明方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2021-11-15
61
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+α
2
+…+(n-1)α
n-1
-0,b=α
1
+α
2
+…+α
n
.
(1)证明方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以r([*])=n-1, 即r(A)=r(A)=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n,-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/PYy4777K
0
考研数学二
相关试题推荐
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z)。证明:.
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(I)的基础解系。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设Φ1(x),Φ2(x),Φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为()。
随机试题
关于结肠癌的叙述,正确的是
下列哪些性质与硝酸异山梨酯相符
重为W的人乘电梯铅垂上升,当电梯加速上升、匀速上升及减速上升时,人对地板的压力分别为p1、p2、p3,它们之间的大小关系为()。
无支护基坑的坑壁形式分为()。
案例6:大洋公司在2005年1月1日平价发行新债券,每张面值1000元,票面利率10%,5年到期,每年12月31日付息。根据案例,回答下列题目:假定2007年11月1日的市场利率为12%,债券的合理市价应为( )元。
2020年3月,某审计组对甲公司2019年度财务收支进行了审计。有关采购与付款循环审计的情况和资料如下:1.甲公司的采购分为两类:A类为重点物资采购,主要通过招标程序确定供应商;B类为一般物资采购,主要利用电子商务平台通过网络采购。2.审计组发现,20
合同争议解决的方式有( )。
已知集合A={x|x<—2}∪{x|x>5},B={x|x<a},且A∩B=,则实数a的取值范围是______.
Therearevariouswaysinwhichindividualeconomicunitscaninteractwithoneanother.Threebasicwaysmaybedescribedasth
AfterthreeyearsatNewYorkUniversity,Ileftatthetimetotakeasix-monthbreakandcomebackthenextsemester.Ineeded
最新回复
(
0
)