首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
admin
2016-10-20
49
问题
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
选项
答案
由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*]
解析
证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/PcT4777K
0
考研数学三
相关试题推荐
[*]
[*]
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
证明[*]
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
求下列函数在指定区间上的最大值、最小值:
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
设a=3i+5j-2k,b=2i+j+9k,试求λ的值,使得(1)λa+b与z轴垂直;(2)λa+b与a垂直,并证明此时|λa+b|取最小值.
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=__________.
随机试题
患者,男性,65岁,慢性咳嗽史30余年。心电图如图3—1—6所示,提示
某女,25岁。患急性咽炎2日,症见咽痛、咽干、咽部红肿、口渴、微恶风、发热,舌边尖红、苔薄黄,脉浮数。证属外感风热,宜选用的成药是
在建筑场地设计标高确定的一般要求中,当无进车道时,一般室内地坪比室外地面高出0.45~0.60m,允许在()m的范围内变动。
外国投资者承诺用以后年度实现的利润进行再投资,即便计划用外商投资企业的利润进行再投资申请被国家有关部门批准,该再投资也不得享受再投资退税的待遇。()
()属于生物技术。
杜克(Duncker,1945)的蜡烛问题说明了()对问题解决的影响。
美国联邦所得税是累进税,收入越高,纳税率越高。美国的一些州还在自己管辖的范围内,在绝大部分出售商品的价格上附加7%左右的销售税。如果销售税也被视为所得税的一种形式的话,那么,这种税收是违背累进制原则的:收入越低,纳税率越高。以下哪项如果为真,最能
“项目”菜单的“运行文件”命令用于执行选定的文件,这些文件可以是()。
关系操作的特点是()操作。
已知三个字符为:a、X和5,按它们的.ASCII码值升序排序,结果是__________。
最新回复
(
0
)