首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
admin
2016-10-20
64
问题
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
选项
答案
由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*]
解析
证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/PcT4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
A,B是两个事件,则下列关系正确的是().
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
证明:存在的充分必要条件是f(x)在x。处的左、右极限都存在并且相等.
差分方程yt+1-yt=t2t的通解为_________.
若函数y=f(x)有fˊ(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
随机试题
下列哪项不符合小脑幕切迹疝的临床表现()
A、由卫生行政部门给予处分,没收违法所得B、由工商行政管理部门处1万元以上20万元以下的罚款C、由卫生行政部门吊销其执业证书D、依法追究刑事责任E、依法承担赔偿责任医疗机构在药品购销中暗中给予、收受回扣或者其他利益的
《中华人民共和国中医药条例》规定,依法设立的社区卫生服务中心(站)和乡镇卫生院等城乡基层卫生服务机构,应当能够
下列不属于理气药主要归经的是
根据《合同法》,下列关于合同责任的说法中,错误的是()。
下列各项中,属于内部控制要素中的控制活动,在风险管理框架下的公司治理中的体现有()。
某次英语期末考试成绩公布后,有如下情况:王东比董强分数低,吴平比岳丽分数低,赵梅比吴平分数高,王东和赵梅得分一样。如果以上陈述为真,则以下哪项也一定为真?()
下列哪个协议不属于应用层协议?()
Thechildrendidn’tstopplayinggames______itwastimeforsupper.
ThefamilyisthecenterofmosttraditionalAsians’lives.Manypeopleworryabouttheirfamilieswelfare,reputation,andhono
最新回复
(
0
)