首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
admin
2016-10-20
33
问题
设函数f(x)在[a,b]上连续,在(a,b)内具有二阶导数,且f(a)=f(b)=0,f(c)<0,(a<c<b).证明:至少存在一点ξ∈(a,b),便f’’(ξ)>0;
选项
答案
由于a<c<b,由已知条件可知f(x)在[a,c]与[c,b]上都满足拉格朗日中值定理的条件,故存在点ξ
1
∈(a,c),ξ
2
∈(c,b),使 f(c)-f(a)=f’(ξ
1
)(c-a), ξ
1
∈(a,c); f(b)-f(c)=f’(ξ
2
)(b-c), ξ
2
∈(c,b). 由于f(a)=f(b)=0,于是有 f(c)=f’(ξ
1
)(c-a), ① -f(c)=f’(ξ
2
)(b-c). ② 由于c-a>0,b-c>0,f(c)<0,因此由式①、②可知 f’(ξ
1
)<0,f’(ξ
2
)>0. 由已知条件知f’(x)在[ξ
1
,ξ
2
]上满足拉格朗日中值定理的条件,故存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使 [*]
解析
证明在某区间内存在一点ξ使得f’(ξ)=0常可考虑利用罗尔定理,而证明在某区间内存在一点ξ使得f’(ξ)>0常可考虑利用拉格朗日中值定理.
转载请注明原文地址:https://kaotiyun.com/show/PcT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
求过点P(1,2,1)及直线和平面Ⅱ:x+2y-z+4=0的交点Q的直线方程.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
计算下列极限:
验证极限存在,但不能用洛必达法则得出.
微分方程y"+y=x2+1+sinx的特解形式可设为
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.(I)求X的分布律;(Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
若当x→0时etanx-ex与xn是同阶无穷小,则n为
随机试题
表中能够唯一地标识一行的、最少的一个或一组属性称为________。
A.没有上就无所谓下B.寒极生热C.阴胜则阳病D.阴平阳秘E.阳盛者胜之以阴
指出阳邪所致疾病性质的是指出阴邪所致疾病性质的是
(2013年、2011年、2010年)实际工程中常用的离心泵叶轮大多采用()叶片。
水土保持措施包括()。
计算应纳税所得额时,准许扣除的利息费用为( )万元。企业上年度应缴纳企业所得税为( )万元。
根据以下资料,回答91-95题。2008年底,我国网民数从1997年的62万增加到2.98亿,居世界第2位。其中宽带网民数达到2.7亿,手机网民数达到1.2亿。互联网普及率达到22.6%,超过全球平均水平。2008年底,我国互联网的国际出口带宽由
简述知识产权的概念和特征。
在法律适用过程中,代表国家行使法律监督权的是
Thesealaylikeanunbrokenmirrorallaroundthepine-girt,lonelyshoresofOrr’sIsland.Tall,kinglysprucesworetheirr
最新回复
(
0
)