首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)在[0,+∞)上可导,f(0)=1且满足等式 f’(x)+f(x)-∫0xf(t)dt=0。 证明:当x≥0时,成立不等式e-x≤f(x)≤1成立。
函数f(x)在[0,+∞)上可导,f(0)=1且满足等式 f’(x)+f(x)-∫0xf(t)dt=0。 证明:当x≥0时,成立不等式e-x≤f(x)≤1成立。
admin
2019-06-09
56
问题
函数f(x)在[0,+∞)上可导,f(0)=1且满足等式
f’(x)+f(x)-
∫
0
x
f(t)dt=0。
证明:当x≥0时,成立不等式e
-x
≤f(x)≤1成立。
选项
答案
方法一:用积分证。 f(x)=f(0)+∫
0
x
f’(t)dt=1-∫
0
x
[*]dt。 而0≤∫
0
x
[*]dt≤∫
0
x
e
-t
dt=-e
-t
|
0
x
=1-e
-x
, 两边同乘以(-1),得: e
-x
-1≤-∫
0
x
[*]dt≤0, 即e
-t
≤f(x)=1-∫
0
x
[*]dt≤1。 方法二:用微分学方法证。 因f(0)=1,f’(x)<0,即f(x)单调递减,所以当x≥0时f(x)≤1。 要证f(x)≥e
-x
,可转化为证明f(x)-e
-x
≥0,令φ(x)=f(x)-e
-x
,则 φ(0)=1-1=0,且φ’(x)=f’(x)+e
-x
≥f’(x)+[*]=0(x≥0), 所以,当x≥0时φ(x)≥0,即f(x)≥e
-x
。 结合两个不等式,推知当x≥0时,e
-x
≤f(x)≤1。证毕。
解析
转载请注明原文地址:https://kaotiyun.com/show/PeV4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设f(χ)在[a,b]三次可微,证明:∈(a,b),使得
设A=,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
计算(x2+y2)dxdy,其中D是由y=一x,所围成的平面区域。
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的()
设f(x)在x=0的某邻域内有连续导数,且求f(0)及f’(0).
设y=eχ为微分方程χy′+P(χ)y=χ的解,求此微分方程满足初始条件y(ln2)=0的特解.
随机试题
国民经济使用是指社会再生产过程的()
简述艺术活动的审美性这一特征。
下列肾脏病变,哪种无“钙化”表现
患者,男,52岁,症见心胸剧痛,持续难解,心悸气短,神疲乏力,自汗盗汗,甚者大汗淋漓,手足心热,口渴心烦,舌质紫暗,舌下络脉青紫,脉细数无力。检查:心电图示前侧壁心梗。其治法是
以下哪味中药不是来源于豆科()。
按照《土地管理法》规定,乡村公益事业用地的批准机关是()。
下列()不是影响单桩水平承载力的因素。
2012年2月,某市财政局派出检查组对某国有外贸企业2011年度的会计工作进行检查,发现存在以下情况:(1)2011年2月,该企业财务处处长安排其侄女(持有会计从业资格证书)在财务处任出纳,并负责保管会计档案。(2)发现一张发票“金额”
“稳步推进扩权强县改革试点,鼓励有条件的省份率先减少行政层次,依法探索省直接管理县(市)的体制”是在下列哪个文件中提出的?()
Humanvisionlikethatofotherprimateshasevolvedinanarborealenvironment.Inthedensecomplexworldofatropicalforest
最新回复
(
0
)