首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=λ,试证明至少存在一点ξ∈(a,b),使 f′(ξ)+f(ξ)=λ.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=λ,试证明至少存在一点ξ∈(a,b),使 f′(ξ)+f(ξ)=λ.
admin
2016-02-27
23
问题
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=λ,试证明至少存在一点ξ∈(a,b),使
f′(ξ)+f(ξ)=λ.
选项
答案
首先考虑哪一个函数的导数能推出f′(x)+f(x)一λ=0.因为 f′(x)+f(x)一λ=[f(x)一λ]′+[f(λ)一λ]=0. 故 e
x
[f(x)一λ]′+(e
x
)′[f(x)一λ]=0·e
x
=0 即 {e
x
[f(x)一λ]}′=0. 因而借助e
x
的导数等于它自己的性质,由函数F(x)=e
x
[f(x)一λ]的导数能推出 f′(x)+f(x)一λ=0. 事实上, F′(x)=e
x
[f(x)一λ]+e
x
f′(x)=e
x
[f′(x)+f(x)一λ]. 因为e
x
≠0,由 e
x
[f′(x)+f(x)一λ]=0, 就得到 f′(x)+f(x)一λ=0, 即 f′(x)+f(x)=λ. 证 作辅助函数 F(x)=e
x
(f(x)一λ), 则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0, F′(x)=e
x
(f′(x)+f(x)一λ), 故由罗尔定理可知,存在ξ∈(a,b),使F′(ξ)=0,注意到e
ξ
≠0,即得 f′(ξ)+f(ξ)=λ.
解析
转载请注明原文地址:https://kaotiyun.com/show/PrbD777K
0
考研数学二
相关试题推荐
影响组织面临的环境不确定程度的两个维度是()。
鉴别组织的各种重要变量及其相互关系的管理技能是()。
2016年滴滴收购优步,这是滴滴实施的()公司层战略。
1998年至2004.年啤酒消费量增长最快的两个地区,其啤酒消费量2004年占世界啤酒消费量的比重约是()。
2006年是“十一五”的开局之年。江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督、科技人才建设和卫生行风建设,各项工作
A、 B、 C、 D、 A本题主要考查了图形样式的运算。第一组图形中,前两个图形白色区域求同得到第三个图形,依照此规律,所以选择A选项。
计算二重积分I=(x+y2)dxdy,其中D={(x,y)|x2+y2≤x+y}.
设A、B为两个n阶方阵,现有4个命题:①若A、B为等价矩阵,则A、B的行向量组等价;②若A、B的行列式相等。即|A|=|B|,则A、B为等价矩阵;③若Ax=0与Bx=0均只有零解,则A、B为等价矩阵;④若A、B为相似
设函数z=z(x,y)具有二阶连续导数,变量代换μ=ax+y,ν=x+by把方程=0,试求a,b的值。
若三阶矩阵A与B相似,矩阵A的特征值为1,2,-2,B*是矩阵B的伴随矩阵,则行列式
随机试题
新闻单位开展公共关系工作有两大优势,一是这些单位深受社会公众瞩目,二是这些单位【】
下列哪一项不属于大剂量静脉肾盂造影的禁忌证
下列药物中属于单环β-内酰胺类的是
建设项目中所需要的原辅材料、能源的供应、生活设施的依托条件以及施工条件等,称为()。
目前,商业银行推出的固定收益类理财产品的投资范围一般不包括()。
在我国实现共同富裕的目标体现着()。
简述自我效能感的基本含义及其提高措施。
以汪峰为代表的中国新摇滚音乐人,在21世纪的第一个十年迅速崛起。汗峰于2013年开始,在中国15个城市进行了巡演。根据最新数据,汪峰本人在2014年的音乐总票房更飙升至1.39亿元。在“2014年度演唱会票房排行榜”当中,汪峰以1.39亿元的票房位列第二,
有如下类模板定义:templateclassBigNumber{longn;public:BigNumber(Ti):n(i){}BigNumberoperator+(BigNumberb
"GeothermalEnergy"GeothermalenergyisnaturalheatfromtheinterioroftheEarththatisconvertedtoheatbuildingsand
最新回复
(
0
)