首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
admin
2021-11-09
84
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pry4777K
0
考研数学二
相关试题推荐
函数z=f(χ,y)在点(χ0,y0)可偏导是函数z=f(χ,y)在点(χ0,y0)连续的().
求摆线(0≤t≤2π)的长度.
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=,α2+α3=,求方程组AX=b的通解.
设区域D={(χ,y)|χ2+y2≤t2}(t>0),f(u)连续,且f(0)=0,f′(0)=2,则=_______.
设当χ>0时,方程忌kχ+=1有且仅有一个根,求k的取值范围.
证明:当χ>0时,arctanχ+.
设f(x)=kx-arctanx(0<k<1)。证明:存在唯一的x0∈(0,+∞),使f(x0)=0。
已知y=f’(x)=arctanx2,则|x=0=________.
随机试题
被中外古建筑专家称为“明初罕见之遗物”“独具匠心之杰作”的寺院是()。
中输尿管点的位置是在()
β受体阻断药
()简称上证180指数,是上海证券交易所对原上证30指数进行调整和更名产生的指数。
某县城管执法局认为宝利电子公司的建房违法,决定强行拆除其违法建筑。其后,拆除决定被认定违法,宝利电子公司要求县城管执法局予以赔偿。遭到拒绝,遂向法院提起行政赔偿诉讼。宝利电子公司除向法院提供证据证明房屋损失外,还提供了本公司员工赵某与当地居民钱某的证言,以
张某向李某背书转让面额为10万元的汇票作为购买房屋的价款,李某接受汇票后背书转让给第三人。如果张某与李某之间的房屋买卖合同被协议解除,则张某可以行使的权利为()。
关于内部控制审计与财务报表审计,以下说法中,错误的是()。
甲接受乙的委托,在乙授权的范围内,以乙的名义,同丙订立合同。下列说法错误的是
某人驾车从A地赶往B地,前一半路程比计划多用时45分钟,平均速度只有计划的80%,若后一半路程的平均速度为120千米/小时,此人还能按原定时间到达B地,A,B两地的距离为().
UnitTestingandComponentTesting--Asoftwareunitrepresentsasmallunitofsoftwareoffunctionality.
最新回复
(
0
)