首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明: f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(x
admin
2021-11-09
45
问题
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取x
i
∈[a,b](i=1,2,…,n)及k
i
>0(i=1,2,…,n)且满足k
1
+k
2
+…+k
n
=1.证明:
f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
选项
答案
令x
0
=k
1
x
1
+k
2
x
2
+…+k
n
x
n
,显然x
0
∈[a,b]. 因为f’’(x)>0,所以f(x)≥f(x
0
)+f’(x
0
)(x-x
0
), 分别取x=x
i
(i=1,2,…,n),得 [*] 由k
i
>0(i=1,2,…,n),上述各式分别乘以k
i
(i=1,2,…,n),得 [*] 将上述各式分别相加,得f(x
0
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
),即 f(k
1
x
1
+k
2
x
2
+…+k
n
x
n
)≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pry4777K
0
考研数学二
相关试题推荐
(1)求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.(2)求函数f(χ,y)=(χ2+2χ+y)ey的极值.
(1)设f(χ+y,χ-y)=χ2-y2+,求f(u,v),并求.(2)设z=f(χ,y)由f(χ+y,χ-y)=χ2-y2-χy确定,求dz.
设z=z(χ,y)由dt=z2+y2+z确定,求dz=_______.
设f(χ)连续,且g(χ)=∫0χf(χ-t)dt,求g′(χ).
就a,b的不同取值,讨论方程组=3,解的情况.
设f(χ)在[a,b]上二阶可导且f〞(χ)>0,证明:f(χ)在(a,b)内为凹函数.
设a1=1,当n>1时,an+1=,证明:数列{an}收敛并求其极限。
求极限。
设f(x)=kx-arctanx(0<k<1)。证明:存在唯一的x0∈(0,+∞),使f(x0)=0。
当x≥0时,f(x)=x,设当x≥0时,求∫0xf(x)g(x-t)dt.
随机试题
大多数气田的天然气是可燃性气体,主要成分是(),还含有少量非烃气体。
在化工管路中,通常在管路的相对低点安装有排气阀。
术前常规禁食的主要目的是
干金苇茎汤与大黄牡丹汤共有的药物是仙方活命饮与透脓散共有的药物是
开放性气胸患者呼吸困难最主要的急救措施是()。
可转债持有人申报转股的可转债数量大于其实际可用可转债余额的,应按其申报数量办理转股。()
与以往的银行理财产品相比,代客境外理财产品具有的特点是()。
我国的反洗钱工作开始于2001年。2001年9月,中国人民银行成立了反洗钱工作领导小组。2002年9月,中国人民银行制定了《金融机构反洗钱规定》、《从民币大额和可疑支付交易报告管理办法》和《金融机构大额和可疑外汇资金交易报告管理办法》(简称“一规定两办法”
唐代前期是修史的“黄金时期”,相继问世了八部断代史书,号称“唐修八史”。下列选项不属于“唐修八史”的是()。
以下关系表达式中,其值为假的是:______。
最新回复
(
0
)